| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #ifndef CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
 
- #define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
 
- #include <vector>
 
- #include "ceres/internal/port.h"
 
- namespace ceres {
 
- namespace internal {
 
- // Extract the block sparsity pattern of the scalar compressed columns
 
- // matrix and return it in compressed column form. The compressed
 
- // column form is stored in two vectors block_rows, and block_cols,
 
- // which correspond to the row and column arrays in a compressed
 
- // column sparse matrix.
 
- //
 
- // If c_ij is the block in the matrix A corresponding to row block i
 
- // and column block j, then it is expected that A contains at least
 
- // one non-zero entry corresponding to the top left entry of c_ij,
 
- // as that entry is used to detect the presence of a non-zero c_ij.
 
- void CompressedColumnScalarMatrixToBlockMatrix(
 
-     const int* scalar_rows,
 
-     const int* scalar_cols,
 
-     const std::vector<int>& row_blocks,
 
-     const std::vector<int>& col_blocks,
 
-     std::vector<int>* block_rows,
 
-     std::vector<int>* block_cols);
 
- // Given a set of blocks and a permutation of these blocks, compute
 
- // the corresponding "scalar" ordering, where the scalar ordering of
 
- // size sum(blocks).
 
- void BlockOrderingToScalarOrdering(
 
-     const std::vector<int>& blocks,
 
-     const std::vector<int>& block_ordering,
 
-     std::vector<int>* scalar_ordering);
 
- // Solve the linear system
 
- //
 
- //   R * solution = rhs
 
- //
 
- // Where R is an upper triangular compressed column sparse matrix.
 
- template <typename IntegerType>
 
- void SolveUpperTriangularInPlace(IntegerType num_cols,
 
-                                  const IntegerType* rows,
 
-                                  const IntegerType* cols,
 
-                                  const double* values,
 
-                                  double* rhs_and_solution) {
 
-   for (IntegerType c = num_cols - 1; c >= 0; --c) {
 
-     rhs_and_solution[c] /= values[cols[c + 1] - 1];
 
-     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
 
-       const IntegerType r = rows[idx];
 
-       const double v = values[idx];
 
-       rhs_and_solution[r] -= v * rhs_and_solution[c];
 
-     }
 
-   }
 
- }
 
- // Solve the linear system
 
- //
 
- //   R' * solution = rhs
 
- //
 
- // Where R is an upper triangular compressed column sparse matrix.
 
- template <typename IntegerType>
 
- void SolveUpperTriangularTransposeInPlace(IntegerType num_cols,
 
-                                           const IntegerType* rows,
 
-                                           const IntegerType* cols,
 
-                                           const double* values,
 
-                                           double* rhs_and_solution) {
 
-   for (IntegerType c = 0; c < num_cols; ++c) {
 
-     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
 
-       const IntegerType r = rows[idx];
 
-       const double v = values[idx];
 
-       rhs_and_solution[c] -= v * rhs_and_solution[r];
 
-     }
 
-     rhs_and_solution[c] =  rhs_and_solution[c] / values[cols[c + 1] - 1];
 
-   }
 
- }
 
- // Given a upper triangular matrix R in compressed column form, solve
 
- // the linear system,
 
- //
 
- //  R'R x = b
 
- //
 
- // Where b is all zeros except for rhs_nonzero_index, where it is
 
- // equal to one.
 
- //
 
- // The function exploits this knowledge to reduce the number of
 
- // floating point operations.
 
- template <typename IntegerType>
 
- void SolveRTRWithSparseRHS(IntegerType num_cols,
 
-                            const IntegerType* rows,
 
-                            const IntegerType* cols,
 
-                            const double* values,
 
-                            const int rhs_nonzero_index,
 
-                            double* solution) {
 
-   std::fill(solution, solution + num_cols, 0.0);
 
-   solution[rhs_nonzero_index] = 1.0 / values[cols[rhs_nonzero_index + 1] - 1];
 
-   for (IntegerType c = rhs_nonzero_index + 1; c < num_cols; ++c) {
 
-     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
 
-       const IntegerType r = rows[idx];
 
-       if (r < rhs_nonzero_index) continue;
 
-       const double v = values[idx];
 
-       solution[c] -= v * solution[r];
 
-     }
 
-     solution[c] =  solution[c] / values[cols[c + 1] - 1];
 
-   }
 
-   SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
 
 
  |