| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include <cmath>#include <limits>#include <memory>#include "Eigen/Geometry"#include "ceres/autodiff_local_parameterization.h"#include "ceres/householder_vector.h"#include "ceres/internal/autodiff.h"#include "ceres/internal/eigen.h"#include "ceres/local_parameterization.h"#include "ceres/random.h"#include "ceres/rotation.h"#include "gtest/gtest.h"namespace ceres {namespace internal {TEST(IdentityParameterization, EverythingTest) {  IdentityParameterization parameterization(3);  EXPECT_EQ(parameterization.GlobalSize(), 3);  EXPECT_EQ(parameterization.LocalSize(), 3);  double x[3] = {1.0, 2.0, 3.0};  double delta[3] = {0.0, 1.0, 2.0};  double x_plus_delta[3] = {0.0, 0.0, 0.0};  parameterization.Plus(x, delta, x_plus_delta);  EXPECT_EQ(x_plus_delta[0], 1.0);  EXPECT_EQ(x_plus_delta[1], 3.0);  EXPECT_EQ(x_plus_delta[2], 5.0);  double jacobian[9];  parameterization.ComputeJacobian(x, jacobian);  int k = 0;  for (int i = 0; i < 3; ++i) {    for (int j = 0; j < 3; ++j, ++k) {      EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);    }  }  Matrix global_matrix = Matrix::Ones(10, 3);  Matrix local_matrix = Matrix::Zero(10, 3);  parameterization.MultiplyByJacobian(x,                                      10,                                      global_matrix.data(),                                      local_matrix.data());  EXPECT_EQ((local_matrix - global_matrix).norm(), 0.0);}TEST(SubsetParameterization, NegativeParameterIndexDeathTest) {  std::vector<int> constant_parameters;  constant_parameters.push_back(-1);  EXPECT_DEATH_IF_SUPPORTED(      SubsetParameterization parameterization(2, constant_parameters),      "greater than equal to zero");}TEST(SubsetParameterization, GreaterThanSizeParameterIndexDeathTest) {  std::vector<int> constant_parameters;  constant_parameters.push_back(2);  EXPECT_DEATH_IF_SUPPORTED(      SubsetParameterization parameterization(2, constant_parameters),      "less than the size");}TEST(SubsetParameterization, DuplicateParametersDeathTest) {  std::vector<int> constant_parameters;  constant_parameters.push_back(1);  constant_parameters.push_back(1);  EXPECT_DEATH_IF_SUPPORTED(      SubsetParameterization parameterization(2, constant_parameters),      "duplicates");}TEST(SubsetParameterization,     ProductParameterizationWithZeroLocalSizeSubsetParameterization1) {  std::vector<int> constant_parameters;  constant_parameters.push_back(0);  LocalParameterization* subset_param =      new SubsetParameterization(1, constant_parameters);  LocalParameterization* identity_param = new IdentityParameterization(2);  ProductParameterization product_param(subset_param, identity_param);  EXPECT_EQ(product_param.GlobalSize(), 3);  EXPECT_EQ(product_param.LocalSize(), 2);  double x[] = {1.0, 1.0, 1.0};  double delta[] = {2.0, 3.0};  double x_plus_delta[] = {0.0, 0.0, 0.0};  EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta));  EXPECT_EQ(x_plus_delta[0], x[0]);  EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]);  EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]);  Matrix actual_jacobian(3, 2);  EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data()));}TEST(SubsetParameterization,     ProductParameterizationWithZeroLocalSizeSubsetParameterization2) {  std::vector<int> constant_parameters;  constant_parameters.push_back(0);  LocalParameterization* subset_param =      new SubsetParameterization(1, constant_parameters);  LocalParameterization* identity_param = new IdentityParameterization(2);  ProductParameterization product_param(identity_param, subset_param);  EXPECT_EQ(product_param.GlobalSize(), 3);  EXPECT_EQ(product_param.LocalSize(), 2);  double x[] = {1.0, 1.0, 1.0};  double delta[] = {2.0, 3.0};  double x_plus_delta[] = {0.0, 0.0, 0.0};  EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta));  EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]);  EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]);  EXPECT_EQ(x_plus_delta[2], x[2]);  Matrix actual_jacobian(3, 2);  EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data()));}TEST(SubsetParameterization, NormalFunctionTest) {  const int kGlobalSize = 4;  const int kLocalSize = 3;  double x[kGlobalSize] = {1.0, 2.0, 3.0, 4.0};  for (int i = 0; i < kGlobalSize; ++i) {    std::vector<int> constant_parameters;    constant_parameters.push_back(i);    SubsetParameterization parameterization(kGlobalSize, constant_parameters);    double delta[kLocalSize] = {1.0, 2.0, 3.0};    double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0};    parameterization.Plus(x, delta, x_plus_delta);    int k = 0;    for (int j = 0; j < kGlobalSize; ++j) {      if (j == i)  {        EXPECT_EQ(x_plus_delta[j], x[j]);      } else {        EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]);      }    }    double jacobian[kGlobalSize * kLocalSize];    parameterization.ComputeJacobian(x, jacobian);    int delta_cursor = 0;    int jacobian_cursor = 0;    for (int j = 0; j < kGlobalSize; ++j) {      if (j != i) {        for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) {          EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0);        }        ++delta_cursor;      } else {        for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) {          EXPECT_EQ(jacobian[jacobian_cursor], 0.0);        }      }    }    Matrix global_matrix = Matrix::Ones(10, kGlobalSize);    for (int row = 0; row < kGlobalSize; ++row) {      for (int col = 0; col < kGlobalSize; ++col) {        global_matrix(row, col) = col;      }    }    Matrix local_matrix = Matrix::Zero(10, kLocalSize);    parameterization.MultiplyByJacobian(x,                                        10,                                        global_matrix.data(),                                        local_matrix.data());    Matrix expected_local_matrix =        global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize);    EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0);  }}// Functor needed to implement automatically differentiated Plus for// quaternions.struct QuaternionPlus {  template<typename T>  bool operator()(const T* x, const T* delta, T* x_plus_delta) const {    const T squared_norm_delta =        delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];    T q_delta[4];    if (squared_norm_delta > T(0.0)) {      T norm_delta = sqrt(squared_norm_delta);      const T sin_delta_by_delta = sin(norm_delta) / norm_delta;      q_delta[0] = cos(norm_delta);      q_delta[1] = sin_delta_by_delta * delta[0];      q_delta[2] = sin_delta_by_delta * delta[1];      q_delta[3] = sin_delta_by_delta * delta[2];    } else {      // We do not just use q_delta = [1,0,0,0] here because that is a      // constant and when used for automatic differentiation will      // lead to a zero derivative. Instead we take a first order      // approximation and evaluate it at zero.      q_delta[0] = T(1.0);      q_delta[1] = delta[0];      q_delta[2] = delta[1];      q_delta[3] = delta[2];    }    QuaternionProduct(q_delta, x, x_plus_delta);    return true;  }};template<typename Parameterization, typename Plus>void QuaternionParameterizationTestHelper(    const double* x, const double* delta,    const double* x_plus_delta_ref) {  const int kGlobalSize = 4;  const int kLocalSize = 3;  const double kTolerance = 1e-14;  double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0, 0.0};  Parameterization parameterization;  parameterization.Plus(x, delta, x_plus_delta);  for (int i = 0; i < kGlobalSize; ++i) {    EXPECT_NEAR(x_plus_delta[i], x_plus_delta[i], kTolerance);  }  const double x_plus_delta_norm =      sqrt(x_plus_delta[0] * x_plus_delta[0] +           x_plus_delta[1] * x_plus_delta[1] +           x_plus_delta[2] * x_plus_delta[2] +           x_plus_delta[3] * x_plus_delta[3]);  EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance);  double jacobian_ref[12];  double zero_delta[kLocalSize] = {0.0, 0.0, 0.0};  const double* parameters[2] = {x, zero_delta};  double* jacobian_array[2] = { NULL, jacobian_ref };  // Autodiff jacobian at delta_x = 0.  internal::AutoDifferentiate<StaticParameterDims<kGlobalSize, kLocalSize>>(      Plus(),      parameters,      kGlobalSize,      x_plus_delta,      jacobian_array);  double jacobian[12];  parameterization.ComputeJacobian(x, jacobian);  for (int i = 0; i < 12; ++i) {    EXPECT_TRUE(IsFinite(jacobian[i]));    EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance)        << "Jacobian mismatch: i = " << i        << "\n Expected \n"        << ConstMatrixRef(jacobian_ref, kGlobalSize, kLocalSize)        << "\n Actual \n"        << ConstMatrixRef(jacobian, kGlobalSize, kLocalSize);  }  Matrix global_matrix = Matrix::Random(10, kGlobalSize);  Matrix local_matrix = Matrix::Zero(10, kLocalSize);  parameterization.MultiplyByJacobian(x,                                      10,                                      global_matrix.data(),                                      local_matrix.data());  Matrix expected_local_matrix =      global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize);  EXPECT_NEAR((local_matrix - expected_local_matrix).norm(),              0.0,              10.0 * std::numeric_limits<double>::epsilon());}template <int N>void Normalize(double* x) {  VectorRef(x, N).normalize();}TEST(QuaternionParameterization, ZeroTest) {  double x[4] = {0.5, 0.5, 0.5, 0.5};  double delta[3] = {0.0, 0.0, 0.0};  double q_delta[4] = {1.0, 0.0, 0.0, 0.0};  double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};  QuaternionProduct(q_delta, x, x_plus_delta);  QuaternionParameterizationTestHelper<QuaternionParameterization,                                       QuaternionPlus>(x, delta, x_plus_delta);}TEST(QuaternionParameterization, NearZeroTest) {  double x[4] = {0.52, 0.25, 0.15, 0.45};  Normalize<4>(x);  double delta[3] = {0.24, 0.15, 0.10};  for (int i = 0; i < 3; ++i) {    delta[i] = delta[i] * 1e-14;  }  double q_delta[4];  q_delta[0] = 1.0;  q_delta[1] = delta[0];  q_delta[2] = delta[1];  q_delta[3] = delta[2];  double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};  QuaternionProduct(q_delta, x, x_plus_delta);  QuaternionParameterizationTestHelper<QuaternionParameterization,                                       QuaternionPlus>(x, delta, x_plus_delta);}TEST(QuaternionParameterization, AwayFromZeroTest) {  double x[4] = {0.52, 0.25, 0.15, 0.45};  Normalize<4>(x);  double delta[3] = {0.24, 0.15, 0.10};  const double delta_norm = sqrt(delta[0] * delta[0] +                                 delta[1] * delta[1] +                                 delta[2] * delta[2]);  double q_delta[4];  q_delta[0] = cos(delta_norm);  q_delta[1] = sin(delta_norm) / delta_norm * delta[0];  q_delta[2] = sin(delta_norm) / delta_norm * delta[1];  q_delta[3] = sin(delta_norm) / delta_norm * delta[2];  double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};  QuaternionProduct(q_delta, x, x_plus_delta);  QuaternionParameterizationTestHelper<QuaternionParameterization,                                       QuaternionPlus>(x, delta, x_plus_delta);}// Functor needed to implement automatically differentiated Plus for// Eigen's quaternion.struct EigenQuaternionPlus {  template<typename T>  bool operator()(const T* x, const T* delta, T* x_plus_delta) const {    const T norm_delta =        sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]);    Eigen::Quaternion<T> q_delta;    if (norm_delta > T(0.0)) {      const T sin_delta_by_delta = sin(norm_delta) / norm_delta;      q_delta.coeffs() << sin_delta_by_delta * delta[0],          sin_delta_by_delta * delta[1], sin_delta_by_delta * delta[2],          cos(norm_delta);    } else {      // We do not just use q_delta = [0,0,0,1] here because that is a      // constant and when used for automatic differentiation will      // lead to a zero derivative. Instead we take a first order      // approximation and evaluate it at zero.      q_delta.coeffs() <<  delta[0], delta[1], delta[2], T(1.0);    }    Eigen::Map<Eigen::Quaternion<T>> x_plus_delta_ref(x_plus_delta);    Eigen::Map<const Eigen::Quaternion<T>> x_ref(x);    x_plus_delta_ref = q_delta * x_ref;    return true;  }};TEST(EigenQuaternionParameterization, ZeroTest) {  Eigen::Quaterniond x(0.5, 0.5, 0.5, 0.5);  double delta[3] = {0.0, 0.0, 0.0};  Eigen::Quaterniond q_delta(1.0, 0.0, 0.0, 0.0);  Eigen::Quaterniond x_plus_delta = q_delta * x;  QuaternionParameterizationTestHelper<EigenQuaternionParameterization,                                       EigenQuaternionPlus>(      x.coeffs().data(), delta, x_plus_delta.coeffs().data());}TEST(EigenQuaternionParameterization, NearZeroTest) {  Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45);  x.normalize();  double delta[3] = {0.24, 0.15, 0.10};  for (int i = 0; i < 3; ++i) {    delta[i] = delta[i] * 1e-14;  }  // Note: w is first in the constructor.  Eigen::Quaterniond q_delta(1.0, delta[0], delta[1], delta[2]);  Eigen::Quaterniond x_plus_delta = q_delta * x;  QuaternionParameterizationTestHelper<EigenQuaternionParameterization,                                       EigenQuaternionPlus>(      x.coeffs().data(), delta, x_plus_delta.coeffs().data());}TEST(EigenQuaternionParameterization, AwayFromZeroTest) {  Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45);  x.normalize();  double delta[3] = {0.24, 0.15, 0.10};  const double delta_norm = sqrt(delta[0] * delta[0] +                                 delta[1] * delta[1] +                                 delta[2] * delta[2]);  // Note: w is first in the constructor.  Eigen::Quaterniond q_delta(cos(delta_norm),                             sin(delta_norm) / delta_norm * delta[0],                             sin(delta_norm) / delta_norm * delta[1],                             sin(delta_norm) / delta_norm * delta[2]);  Eigen::Quaterniond x_plus_delta = q_delta * x;  QuaternionParameterizationTestHelper<EigenQuaternionParameterization,                                       EigenQuaternionPlus>(      x.coeffs().data(), delta, x_plus_delta.coeffs().data());}// Functor needed to implement automatically differentiated Plus for// homogeneous vectors. Note this explicitly defined for vectors of size 4.struct HomogeneousVectorParameterizationPlus {  template<typename Scalar>  bool operator()(const Scalar* p_x, const Scalar* p_delta,                  Scalar* p_x_plus_delta) const {    Eigen::Map<const Eigen::Matrix<Scalar, 4, 1>> x(p_x);    Eigen::Map<const Eigen::Matrix<Scalar, 3, 1>> delta(p_delta);    Eigen::Map<Eigen::Matrix<Scalar, 4, 1>> x_plus_delta(p_x_plus_delta);    const Scalar squared_norm_delta =        delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];    Eigen::Matrix<Scalar, 4, 1> y;    Scalar one_half(0.5);    if (squared_norm_delta > Scalar(0.0)) {      Scalar norm_delta = sqrt(squared_norm_delta);      Scalar norm_delta_div_2 = 0.5 * norm_delta;      const Scalar sin_delta_by_delta = sin(norm_delta_div_2) /          norm_delta_div_2;      y[0] = sin_delta_by_delta * delta[0] * one_half;      y[1] = sin_delta_by_delta * delta[1] * one_half;      y[2] = sin_delta_by_delta * delta[2] * one_half;      y[3] = cos(norm_delta_div_2);    } else {      // We do not just use y = [0,0,0,1] here because that is a      // constant and when used for automatic differentiation will      // lead to a zero derivative. Instead we take a first order      // approximation and evaluate it at zero.      y[0] = delta[0] * one_half;      y[1] = delta[1] * one_half;      y[2] = delta[2] * one_half;      y[3] = Scalar(1.0);    }    Eigen::Matrix<Scalar, Eigen::Dynamic, 1> v(4);    Scalar beta;    internal::ComputeHouseholderVector<Scalar>(x, &v, &beta);    x_plus_delta = x.norm() * (y - v * (beta * v.dot(y)));    return true;  }};static void HomogeneousVectorParameterizationHelper(const double* x,                                                    const double* delta) {  const double kTolerance = 1e-14;  HomogeneousVectorParameterization homogeneous_vector_parameterization(4);  // Ensure the update maintains the norm.  double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};  homogeneous_vector_parameterization.Plus(x, delta, x_plus_delta);  const double x_plus_delta_norm =      sqrt(x_plus_delta[0] * x_plus_delta[0] +           x_plus_delta[1] * x_plus_delta[1] +           x_plus_delta[2] * x_plus_delta[2] +           x_plus_delta[3] * x_plus_delta[3]);  const double x_norm = sqrt(x[0] * x[0] + x[1] * x[1] +                             x[2] * x[2] + x[3] * x[3]);  EXPECT_NEAR(x_plus_delta_norm, x_norm, kTolerance);  // Autodiff jacobian at delta_x = 0.  AutoDiffLocalParameterization<HomogeneousVectorParameterizationPlus, 4, 3>      autodiff_jacobian;  double jacobian_autodiff[12];  double jacobian_analytic[12];  homogeneous_vector_parameterization.ComputeJacobian(x, jacobian_analytic);  autodiff_jacobian.ComputeJacobian(x, jacobian_autodiff);  for (int i = 0; i < 12; ++i) {    EXPECT_TRUE(ceres::IsFinite(jacobian_analytic[i]));    EXPECT_NEAR(jacobian_analytic[i], jacobian_autodiff[i], kTolerance)        << "Jacobian mismatch: i = " << i << ", " << jacobian_analytic[i] << " "        << jacobian_autodiff[i];  }}TEST(HomogeneousVectorParameterization, ZeroTest) {  double x[4] = {0.0, 0.0, 0.0, 1.0};  Normalize<4>(x);  double delta[3] = {0.0, 0.0, 0.0};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, NearZeroTest1) {  double x[4] = {1e-5, 1e-5, 1e-5, 1.0};  Normalize<4>(x);  double delta[3] = {0.0, 1.0, 0.0};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, NearZeroTest2) {  double x[4] = {0.001, 0.0, 0.0, 0.0};  double delta[3] = {0.0, 1.0, 0.0};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, AwayFromZeroTest1) {  double x[4] = {0.52, 0.25, 0.15, 0.45};  Normalize<4>(x);  double delta[3] = {0.0, 1.0, -0.5};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, AwayFromZeroTest2) {  double x[4] = {0.87, -0.25, -0.34, 0.45};  Normalize<4>(x);  double delta[3] = {0.0, 0.0, -0.5};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, AwayFromZeroTest3) {  double x[4] = {0.0, 0.0, 0.0, 2.0};  double delta[3] = {0.0, 0.0, 0};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, AwayFromZeroTest4) {  double x[4] = {0.2, -1.0, 0.0, 2.0};  double delta[3] = {1.4, 0.0, -0.5};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, AwayFromZeroTest5) {  double x[4] = {2.0, 0.0, 0.0, 0.0};  double delta[3] = {1.4, 0.0, -0.5};  HomogeneousVectorParameterizationHelper(x, delta);}TEST(HomogeneousVectorParameterization, DeathTests) {  EXPECT_DEATH_IF_SUPPORTED(HomogeneousVectorParameterization x(1), "size");}class ProductParameterizationTest : public ::testing::Test { protected :  virtual void SetUp() {    const int global_size1 = 5;    std::vector<int> constant_parameters1;    constant_parameters1.push_back(2);    param1_.reset(new SubsetParameterization(global_size1,                                             constant_parameters1));    const int global_size2 = 3;    std::vector<int> constant_parameters2;    constant_parameters2.push_back(0);    constant_parameters2.push_back(1);    param2_.reset(new SubsetParameterization(global_size2,                                             constant_parameters2));    const int global_size3 = 4;    std::vector<int> constant_parameters3;    constant_parameters3.push_back(1);    param3_.reset(new SubsetParameterization(global_size3,                                             constant_parameters3));    const int global_size4 = 2;    std::vector<int> constant_parameters4;    constant_parameters4.push_back(1);    param4_.reset(new SubsetParameterization(global_size4,                                             constant_parameters4));  }  std::unique_ptr<LocalParameterization> param1_;  std::unique_ptr<LocalParameterization> param2_;  std::unique_ptr<LocalParameterization> param3_;  std::unique_ptr<LocalParameterization> param4_;};TEST_F(ProductParameterizationTest, LocalAndGlobalSize2) {  LocalParameterization* param1 = param1_.release();  LocalParameterization* param2 = param2_.release();  ProductParameterization product_param(param1, param2);  EXPECT_EQ(product_param.LocalSize(),            param1->LocalSize() + param2->LocalSize());  EXPECT_EQ(product_param.GlobalSize(),            param1->GlobalSize() + param2->GlobalSize());}TEST_F(ProductParameterizationTest, LocalAndGlobalSize3) {  LocalParameterization* param1 = param1_.release();  LocalParameterization* param2 = param2_.release();  LocalParameterization* param3 = param3_.release();  ProductParameterization product_param(param1, param2, param3);  EXPECT_EQ(product_param.LocalSize(),            param1->LocalSize() + param2->LocalSize() + param3->LocalSize());  EXPECT_EQ(product_param.GlobalSize(),            param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize());}TEST_F(ProductParameterizationTest, LocalAndGlobalSize4) {  LocalParameterization* param1 = param1_.release();  LocalParameterization* param2 = param2_.release();  LocalParameterization* param3 = param3_.release();  LocalParameterization* param4 = param4_.release();  ProductParameterization product_param(param1, param2, param3, param4);  EXPECT_EQ(product_param.LocalSize(),            param1->LocalSize() +            param2->LocalSize() +            param3->LocalSize() +            param4->LocalSize());  EXPECT_EQ(product_param.GlobalSize(),            param1->GlobalSize() +            param2->GlobalSize() +            param3->GlobalSize() +            param4->GlobalSize());}TEST_F(ProductParameterizationTest, Plus) {  LocalParameterization* param1 = param1_.release();  LocalParameterization* param2 = param2_.release();  LocalParameterization* param3 = param3_.release();  LocalParameterization* param4 = param4_.release();  ProductParameterization product_param(param1, param2, param3, param4);  std::vector<double> x(product_param.GlobalSize(), 0.0);  std::vector<double> delta(product_param.LocalSize(), 0.0);  std::vector<double> x_plus_delta_expected(product_param.GlobalSize(), 0.0);  std::vector<double> x_plus_delta(product_param.GlobalSize(), 0.0);  for (int i = 0; i < product_param.GlobalSize(); ++i) {    x[i] = RandNormal();  }  for (int i = 0; i < product_param.LocalSize(); ++i) {    delta[i] = RandNormal();  }  EXPECT_TRUE(product_param.Plus(&x[0], &delta[0], &x_plus_delta_expected[0]));  int x_cursor = 0;  int delta_cursor = 0;  EXPECT_TRUE(param1->Plus(&x[x_cursor],                           &delta[delta_cursor],                           &x_plus_delta[x_cursor]));  x_cursor += param1->GlobalSize();  delta_cursor += param1->LocalSize();  EXPECT_TRUE(param2->Plus(&x[x_cursor],                           &delta[delta_cursor],                           &x_plus_delta[x_cursor]));  x_cursor += param2->GlobalSize();  delta_cursor += param2->LocalSize();  EXPECT_TRUE(param3->Plus(&x[x_cursor],                           &delta[delta_cursor],                           &x_plus_delta[x_cursor]));  x_cursor += param3->GlobalSize();  delta_cursor += param3->LocalSize();  EXPECT_TRUE(param4->Plus(&x[x_cursor],                           &delta[delta_cursor],                           &x_plus_delta[x_cursor]));  x_cursor += param4->GlobalSize();  delta_cursor += param4->LocalSize();  for (int i = 0; i < x.size(); ++i) {    EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]);  }}TEST_F(ProductParameterizationTest, ComputeJacobian) {  LocalParameterization* param1 = param1_.release();  LocalParameterization* param2 = param2_.release();  LocalParameterization* param3 = param3_.release();  LocalParameterization* param4 = param4_.release();  ProductParameterization product_param(param1, param2, param3, param4);  std::vector<double> x(product_param.GlobalSize(), 0.0);  for (int i = 0; i < product_param.GlobalSize(); ++i) {    x[i] = RandNormal();  }  Matrix jacobian = Matrix::Random(product_param.GlobalSize(),                                   product_param.LocalSize());  EXPECT_TRUE(product_param.ComputeJacobian(&x[0], jacobian.data()));  int x_cursor = 0;  int delta_cursor = 0;  Matrix jacobian1(param1->GlobalSize(), param1->LocalSize());  EXPECT_TRUE(param1->ComputeJacobian(&x[x_cursor], jacobian1.data()));  jacobian.block(x_cursor, delta_cursor,                 param1->GlobalSize(),                 param1->LocalSize())      -= jacobian1;  x_cursor += param1->GlobalSize();  delta_cursor += param1->LocalSize();  Matrix jacobian2(param2->GlobalSize(), param2->LocalSize());  EXPECT_TRUE(param2->ComputeJacobian(&x[x_cursor], jacobian2.data()));  jacobian.block(x_cursor, delta_cursor,                 param2->GlobalSize(),                 param2->LocalSize())      -= jacobian2;  x_cursor += param2->GlobalSize();  delta_cursor += param2->LocalSize();  Matrix jacobian3(param3->GlobalSize(), param3->LocalSize());  EXPECT_TRUE(param3->ComputeJacobian(&x[x_cursor], jacobian3.data()));  jacobian.block(x_cursor, delta_cursor,                 param3->GlobalSize(),                 param3->LocalSize())      -= jacobian3;  x_cursor += param3->GlobalSize();  delta_cursor += param3->LocalSize();  Matrix jacobian4(param4->GlobalSize(), param4->LocalSize());  EXPECT_TRUE(param4->ComputeJacobian(&x[x_cursor], jacobian4.data()));  jacobian.block(x_cursor, delta_cursor,                 param4->GlobalSize(),                 param4->LocalSize())      -= jacobian4;  x_cursor += param4->GlobalSize();  delta_cursor += param4->LocalSize();  EXPECT_NEAR(jacobian.norm(), 0.0, std::numeric_limits<double>::epsilon());}}  // namespace internal}  // namespace ceres
 |