| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- //
 
- // Tests shared across evaluators. The tests try all combinations of linear
 
- // solver and num_eliminate_blocks (for schur-based solvers).
 
- #include "ceres/evaluator.h"
 
- #include "ceres/casts.h"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/crs_matrix.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/local_parameterization.h"
 
- #include "ceres/problem_impl.h"
 
- #include "ceres/program.h"
 
- #include "ceres/sized_cost_function.h"
 
- #include "ceres/sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- // TODO(keir): Consider pushing this into a common test utils file.
 
- template<int kFactor, int kNumResiduals,
 
-          int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true>
 
- class ParameterIgnoringCostFunction
 
-     : public SizedCostFunction<kNumResiduals, N0, N1, N2> {
 
-   typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base;
 
-  public:
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     for (int i = 0; i < Base::num_residuals(); ++i) {
 
-       residuals[i] = i + 1;
 
-     }
 
-     if (jacobians) {
 
-       for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) {
 
-         // The jacobians here are full sized, but they are transformed in the
 
-         // evaluator into the "local" jacobian. In the tests, the "subset
 
-         // constant" parameterization is used, which should pick out columns
 
-         // from these jacobians. Put values in the jacobian that make this
 
-         // obvious; in particular, make the jacobians like this:
 
-         //
 
-         //   1 2 3 4 ...
 
-         //   1 2 3 4 ...   .*  kFactor
 
-         //   1 2 3 4 ...
 
-         //
 
-         // where the multiplication by kFactor makes it easier to distinguish
 
-         // between Jacobians of different residuals for the same parameter.
 
-         if (jacobians[k] != NULL) {
 
-           MatrixRef jacobian(jacobians[k],
 
-                              Base::num_residuals(),
 
-                              Base::parameter_block_sizes()[k]);
 
-           for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) {
 
-             jacobian.col(j).setConstant(kFactor * (j + 1));
 
-           }
 
-         }
 
-       }
 
-     }
 
-     return kSucceeds;
 
-   }
 
- };
 
- struct ExpectedEvaluation {
 
-   int num_rows;
 
-   int num_cols;
 
-   double cost;
 
-   const double residuals[50];
 
-   const double gradient[50];
 
-   const double jacobian[200];
 
- };
 
- void CompareEvaluations(int expected_num_rows,
 
-                         int expected_num_cols,
 
-                         double expected_cost,
 
-                         const double* expected_residuals,
 
-                         const double* expected_gradient,
 
-                         const double* expected_jacobian,
 
-                         const double actual_cost,
 
-                         const double* actual_residuals,
 
-                         const double* actual_gradient,
 
-                         const double* actual_jacobian) {
 
-   EXPECT_EQ(expected_cost, actual_cost);
 
-   if (expected_residuals != NULL) {
 
-     ConstVectorRef expected_residuals_vector(expected_residuals,
 
-                                              expected_num_rows);
 
-     ConstVectorRef actual_residuals_vector(actual_residuals,
 
-                                            expected_num_rows);
 
-     EXPECT_TRUE((actual_residuals_vector.array() ==
 
-                  expected_residuals_vector.array()).all())
 
-         << "Actual:\n" << actual_residuals_vector
 
-         << "\nExpected:\n" << expected_residuals_vector;
 
-   }
 
-   if (expected_gradient != NULL) {
 
-     ConstVectorRef expected_gradient_vector(expected_gradient,
 
-                                             expected_num_cols);
 
-     ConstVectorRef actual_gradient_vector(actual_gradient,
 
-                                             expected_num_cols);
 
-     EXPECT_TRUE((actual_gradient_vector.array() ==
 
-                  expected_gradient_vector.array()).all())
 
-         << "Actual:\n" << actual_gradient_vector.transpose()
 
-         << "\nExpected:\n" << expected_gradient_vector.transpose();
 
-   }
 
-   if (expected_jacobian != NULL) {
 
-     ConstMatrixRef expected_jacobian_matrix(expected_jacobian,
 
-                                             expected_num_rows,
 
-                                             expected_num_cols);
 
-     ConstMatrixRef actual_jacobian_matrix(actual_jacobian,
 
-                                           expected_num_rows,
 
-                                           expected_num_cols);
 
-     EXPECT_TRUE((actual_jacobian_matrix.array() ==
 
-                  expected_jacobian_matrix.array()).all())
 
-         << "Actual:\n" << actual_jacobian_matrix
 
-         << "\nExpected:\n" << expected_jacobian_matrix;
 
-   }
 
- }
 
- struct EvaluatorTest
 
-     : public ::testing::TestWithParam<pair<LinearSolverType, int> > {
 
-   Evaluator* CreateEvaluator(Program* program) {
 
-     // This program is straight from the ProblemImpl, and so has no index/offset
 
-     // yet; compute it here as required by the evalutor implementations.
 
-     program->SetParameterOffsetsAndIndex();
 
-     VLOG(1) << "Creating evaluator with type: " << GetParam().first
 
-             << " and num_eliminate_blocks: " << GetParam().second;
 
-     Evaluator::Options options;
 
-     options.linear_solver_type = GetParam().first;
 
-     options.num_eliminate_blocks = GetParam().second;
 
-     string error;
 
-     return Evaluator::Create(options, program, &error);
 
-   }
 
-   void EvaluateAndCompare(ProblemImpl *problem,
 
-                           int expected_num_rows,
 
-                           int expected_num_cols,
 
-                           double expected_cost,
 
-                           const double* expected_residuals,
 
-                           const double* expected_gradient,
 
-                           const double* expected_jacobian) {
 
-     scoped_ptr<Evaluator> evaluator(
 
-         CreateEvaluator(problem->mutable_program()));
 
-     int num_residuals = expected_num_rows;
 
-     int num_parameters = expected_num_cols;
 
-     double cost = -1;
 
-     Vector residuals(num_residuals);
 
-     residuals.setConstant(-2000);
 
-     Vector gradient(num_parameters);
 
-     gradient.setConstant(-3000);
 
-     scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
 
-     ASSERT_EQ(expected_num_rows, evaluator->NumResiduals());
 
-     ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters());
 
-     ASSERT_EQ(expected_num_rows, jacobian->num_rows());
 
-     ASSERT_EQ(expected_num_cols, jacobian->num_cols());
 
-     vector<double> state(evaluator->NumParameters());
 
-     ASSERT_TRUE(evaluator->Evaluate(
 
-           &state[0],
 
-           &cost,
 
-           expected_residuals != NULL ? &residuals[0]  : NULL,
 
-           expected_gradient  != NULL ? &gradient[0]   : NULL,
 
-           expected_jacobian  != NULL ? jacobian.get() : NULL));
 
-     Matrix actual_jacobian;
 
-     if (expected_jacobian != NULL) {
 
-       jacobian->ToDenseMatrix(&actual_jacobian);
 
-     }
 
-     CompareEvaluations(expected_num_rows,
 
-                        expected_num_cols,
 
-                        expected_cost,
 
-                        expected_residuals,
 
-                        expected_gradient,
 
-                        expected_jacobian,
 
-                        cost,
 
-                        &residuals[0],
 
-                        &gradient[0],
 
-                        actual_jacobian.data());
 
-   }
 
-   // Try all combinations of parameters for the evaluator.
 
-   void CheckAllEvaluationCombinations(const ExpectedEvaluation &expected) {
 
-     for (int i = 0; i < 8; ++i) {
 
-       EvaluateAndCompare(&problem,
 
-                          expected.num_rows,
 
-                          expected.num_cols,
 
-                          expected.cost,
 
-                          (i & 1) ? expected.residuals : NULL,
 
-                          (i & 2) ? expected.gradient  : NULL,
 
-                          (i & 4) ? expected.jacobian  : NULL);
 
-     }
 
-   }
 
-   // The values are ignored completely by the cost function.
 
-   double x[2];
 
-   double y[3];
 
-   double z[4];
 
-   ProblemImpl problem;
 
- };
 
- void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) {
 
-   VectorRef(sparse_matrix->mutable_values(),
 
-             sparse_matrix->num_nonzeros()).setConstant(value);
 
- }
 
- TEST_P(EvaluatorTest, SingleResidualProblem) {
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,
 
-                            NULL,
 
-                            x, y, z);
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     3, 9,
 
-     // Cost
 
-     7.0,
 
-     // Residuals
 
-     { 1.0, 2.0, 3.0 },
 
-     // Gradient
 
-     { 6.0, 12.0,              // x
 
-       6.0, 12.0, 18.0,        // y
 
-       6.0, 12.0, 18.0, 24.0,  // z
 
-     },
 
-     // Jacobian
 
-     //   x          y             z
 
-     { 1, 2,   1, 2, 3,   1, 2, 3, 4,
 
-       1, 2,   1, 2, 3,   1, 2, 3, 4,
 
-       1, 2,   1, 2, 3,   1, 2, 3, 4
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) {
 
-   // Add the parameters in explicit order to force the ordering in the program.
 
-   problem.AddParameterBlock(x,  2);
 
-   problem.AddParameterBlock(y,  3);
 
-   problem.AddParameterBlock(z,  4);
 
-   // Then use a cost function which is similar to the others, but swap around
 
-   // the ordering of the parameters to the cost function. This shouldn't affect
 
-   // the jacobian evaluation, but requires explicit handling in the evaluators.
 
-   // At one point the compressed row evaluator had a bug that went undetected
 
-   // for a long time, since by chance most users added parameters to the problem
 
-   // in the same order that they occured as parameters to a cost function.
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>,
 
-                            NULL,
 
-                            z, y, x);
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     3, 9,
 
-     // Cost
 
-     7.0,
 
-     // Residuals
 
-     { 1.0, 2.0, 3.0 },
 
-     // Gradient
 
-     { 6.0, 12.0,              // x
 
-       6.0, 12.0, 18.0,        // y
 
-       6.0, 12.0, 18.0, 24.0,  // z
 
-     },
 
-     // Jacobian
 
-     //   x          y             z
 
-     { 1, 2,   1, 2, 3,   1, 2, 3, 4,
 
-       1, 2,   1, 2, 3,   1, 2, 3, 4,
 
-       1, 2,   1, 2, 3,   1, 2, 3, 4
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) {
 
-   // These parameters are not used.
 
-   double a[2];
 
-   double b[1];
 
-   double c[1];
 
-   double d[3];
 
-   // Add the parameters in a mixed order so the Jacobian is "checkered" with the
 
-   // values from the other parameters.
 
-   problem.AddParameterBlock(a, 2);
 
-   problem.AddParameterBlock(x, 2);
 
-   problem.AddParameterBlock(b, 1);
 
-   problem.AddParameterBlock(y, 3);
 
-   problem.AddParameterBlock(c, 1);
 
-   problem.AddParameterBlock(z, 4);
 
-   problem.AddParameterBlock(d, 3);
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,
 
-                            NULL,
 
-                            x, y, z);
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     3, 16,
 
-     // Cost
 
-     7.0,
 
-     // Residuals
 
-     { 1.0, 2.0, 3.0 },
 
-     // Gradient
 
-     { 0.0, 0.0,               // a
 
-       6.0, 12.0,              // x
 
-       0.0,                    // b
 
-       6.0, 12.0, 18.0,        // y
 
-       0.0,                    // c
 
-       6.0, 12.0, 18.0, 24.0,  // z
 
-       0.0, 0.0, 0.0,          // d
 
-     },
 
-     // Jacobian
 
-     //   a        x     b           y     c              z           d
 
-     { 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0,
 
-       0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0,
 
-       0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_P(EvaluatorTest, MultipleResidualProblem) {
 
-   // Add the parameters in explicit order to force the ordering in the program.
 
-   problem.AddParameterBlock(x,  2);
 
-   problem.AddParameterBlock(y,  3);
 
-   problem.AddParameterBlock(z,  4);
 
-   // f(x, y) in R^2
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
 
-                            NULL,
 
-                            x, y);
 
-   // g(x, z) in R^3
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
 
-                            NULL,
 
-                            x, z);
 
-   // h(y, z) in R^4
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
 
-                            NULL,
 
-                            y, z);
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     9, 9,
 
-     // Cost
 
-     // f       g           h
 
-     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
 
-     // Residuals
 
-     { 1.0, 2.0,           // f
 
-       1.0, 2.0, 3.0,      // g
 
-       1.0, 2.0, 3.0, 4.0  // h
 
-     },
 
-     // Gradient
 
-     { 15.0, 30.0,               // x
 
-       33.0, 66.0, 99.0,         // y
 
-       42.0, 84.0, 126.0, 168.0  // z
 
-     },
 
-     // Jacobian
 
-     //                x        y           z
 
-     {   /* f(x, y) */ 1, 2,    1, 2, 3,    0, 0, 0, 0,
 
-                       1, 2,    1, 2, 3,    0, 0, 0, 0,
 
-         /* g(x, z) */ 2, 4,    0, 0, 0,    2, 4, 6, 8,
 
-                       2, 4,    0, 0, 0,    2, 4, 6, 8,
 
-                       2, 4,    0, 0, 0,    2, 4, 6, 8,
 
-         /* h(y, z) */ 0, 0,    3, 6, 9,    3, 6, 9, 12,
 
-                       0, 0,    3, 6, 9,    3, 6, 9, 12,
 
-                       0, 0,    3, 6, 9,    3, 6, 9, 12,
 
-                       0, 0,    3, 6, 9,    3, 6, 9, 12
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) {
 
-   // Add the parameters in explicit order to force the ordering in the program.
 
-   problem.AddParameterBlock(x,  2);
 
-   // Fix y's first dimension.
 
-   vector<int> y_fixed;
 
-   y_fixed.push_back(0);
 
-   problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed));
 
-   // Fix z's second dimension.
 
-   vector<int> z_fixed;
 
-   z_fixed.push_back(1);
 
-   problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed));
 
-   // f(x, y) in R^2
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
 
-                            NULL,
 
-                            x, y);
 
-   // g(x, z) in R^3
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
 
-                            NULL,
 
-                            x, z);
 
-   // h(y, z) in R^4
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
 
-                            NULL,
 
-                            y, z);
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     9, 7,
 
-     // Cost
 
-     // f       g           h
 
-     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
 
-     // Residuals
 
-     { 1.0, 2.0,           // f
 
-       1.0, 2.0, 3.0,      // g
 
-       1.0, 2.0, 3.0, 4.0  // h
 
-     },
 
-     // Gradient
 
-     { 15.0, 30.0,         // x
 
-       66.0, 99.0,         // y
 
-       42.0, 126.0, 168.0  // z
 
-     },
 
-     // Jacobian
 
-     //                x        y           z
 
-     {   /* f(x, y) */ 1, 2,    2, 3,    0, 0, 0,
 
-                       1, 2,    2, 3,    0, 0, 0,
 
-         /* g(x, z) */ 2, 4,    0, 0,    2, 6, 8,
 
-                       2, 4,    0, 0,    2, 6, 8,
 
-                       2, 4,    0, 0,    2, 6, 8,
 
-         /* h(y, z) */ 0, 0,    6, 9,    3, 9, 12,
 
-                       0, 0,    6, 9,    3, 9, 12,
 
-                       0, 0,    6, 9,    3, 9, 12,
 
-                       0, 0,    6, 9,    3, 9, 12
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) {
 
-   // The values are ignored completely by the cost function.
 
-   double x[2];
 
-   double y[3];
 
-   double z[4];
 
-   // Add the parameters in explicit order to force the ordering in the program.
 
-   problem.AddParameterBlock(x,  2);
 
-   problem.AddParameterBlock(y,  3);
 
-   problem.AddParameterBlock(z,  4);
 
-   // f(x, y) in R^2
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,
 
-                            NULL,
 
-                            x, y);
 
-   // g(x, z) in R^3
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,
 
-                            NULL,
 
-                            x, z);
 
-   // h(y, z) in R^4
 
-   problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,
 
-                            NULL,
 
-                            y, z);
 
-   // For this test, "z" is constant.
 
-   problem.SetParameterBlockConstant(z);
 
-   // Create the reduced program which is missing the fixed "z" variable.
 
-   // Normally, the preprocessing of the program that happens in solver_impl
 
-   // takes care of this, but we don't want to invoke the solver here.
 
-   Program reduced_program;
 
-   vector<ParameterBlock*>* parameter_blocks =
 
-       problem.mutable_program()->mutable_parameter_blocks();
 
-   // "z" is the last parameter; save it for later and pop it off temporarily.
 
-   // Note that "z" will still get read during evaluation, so it cannot be
 
-   // deleted at this point.
 
-   ParameterBlock* parameter_block_z = parameter_blocks->back();
 
-   parameter_blocks->pop_back();
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     9, 5,
 
-     // Cost
 
-     // f       g           h
 
-     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,
 
-     // Residuals
 
-     { 1.0, 2.0,           // f
 
-       1.0, 2.0, 3.0,      // g
 
-       1.0, 2.0, 3.0, 4.0  // h
 
-     },
 
-     // Gradient
 
-     { 15.0, 30.0,        // x
 
-       33.0, 66.0, 99.0,  // y
 
-     },
 
-     // Jacobian
 
-     //                x        y
 
-     {   /* f(x, y) */ 1, 2,    1, 2, 3,
 
-                       1, 2,    1, 2, 3,
 
-         /* g(x, z) */ 2, 4,    0, 0, 0,
 
-                       2, 4,    0, 0, 0,
 
-                       2, 4,    0, 0, 0,
 
-         /* h(y, z) */ 0, 0,    3, 6, 9,
 
-                       0, 0,    3, 6, 9,
 
-                       0, 0,    3, 6, 9,
 
-                       0, 0,    3, 6, 9
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
-   // Restore parameter block z, so it will get freed in a consistent way.
 
-   parameter_blocks->push_back(parameter_block_z);
 
- }
 
- TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) {
 
-   // Switch the return value to failure.
 
-   problem.AddResidualBlock(
 
-       new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z);
 
-   // The values are ignored.
 
-   double state[9];
 
-   scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program()));
 
-   scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
 
-   double cost;
 
-   EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL));
 
- }
 
- // In the pairs, the first argument is the linear solver type, and the second
 
- // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only
 
- // makes sense for the schur-based solvers.
 
- //
 
- // Try all values of num_eliminate_blocks that make sense given that in the
 
- // tests a maximum of 4 parameter blocks are present.
 
- INSTANTIATE_TEST_CASE_P(
 
-     LinearSolvers,
 
-     EvaluatorTest,
 
-     ::testing::Values(make_pair(DENSE_QR, 0),
 
-                       make_pair(DENSE_SCHUR, 0),
 
-                       make_pair(DENSE_SCHUR, 1),
 
-                       make_pair(DENSE_SCHUR, 2),
 
-                       make_pair(DENSE_SCHUR, 3),
 
-                       make_pair(DENSE_SCHUR, 4),
 
-                       make_pair(SPARSE_SCHUR, 0),
 
-                       make_pair(SPARSE_SCHUR, 1),
 
-                       make_pair(SPARSE_SCHUR, 2),
 
-                       make_pair(SPARSE_SCHUR, 3),
 
-                       make_pair(SPARSE_SCHUR, 4),
 
-                       make_pair(ITERATIVE_SCHUR, 0),
 
-                       make_pair(ITERATIVE_SCHUR, 1),
 
-                       make_pair(ITERATIVE_SCHUR, 2),
 
-                       make_pair(ITERATIVE_SCHUR, 3),
 
-                       make_pair(ITERATIVE_SCHUR, 4),
 
-                       make_pair(SPARSE_NORMAL_CHOLESKY, 0)));
 
- // Simple cost function used to check if the evaluator is sensitive to
 
- // state changes.
 
- class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> {
 
-  public:
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     double x1 = parameters[0][0];
 
-     double x2 = parameters[0][1];
 
-     residuals[0] = x1 * x1;
 
-     residuals[1] = x2 * x2;
 
-     if (jacobians != NULL) {
 
-       double* jacobian = jacobians[0];
 
-       if (jacobian != NULL) {
 
-         jacobian[0] = 2.0 * x1;
 
-         jacobian[1] = 0.0;
 
-         jacobian[2] = 0.0;
 
-         jacobian[3] = 2.0 * x2;
 
-       }
 
-     }
 
-     return true;
 
-   }
 
- };
 
- TEST(Evaluator, EvaluatorRespectsParameterChanges) {
 
-   ProblemImpl problem;
 
-   double x[2];
 
-   x[0] = 1.0;
 
-   x[1] = 1.0;
 
-   problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x);
 
-   Program* program = problem.mutable_program();
 
-   program->SetParameterOffsetsAndIndex();
 
-   Evaluator::Options options;
 
-   options.linear_solver_type = DENSE_QR;
 
-   options.num_eliminate_blocks = 0;
 
-   string error;
 
-   scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error));
 
-   scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
 
-   ASSERT_EQ(2, jacobian->num_rows());
 
-   ASSERT_EQ(2, jacobian->num_cols());
 
-   double state[2];
 
-   state[0] = 2.0;
 
-   state[1] = 3.0;
 
-   // The original state of a residual block comes from the user's
 
-   // state. So the original state is 1.0, 1.0, and the only way we get
 
-   // the 2.0, 3.0 results in the following tests is if it respects the
 
-   // values in the state vector.
 
-   // Cost only; no residuals and no jacobian.
 
-   {
 
-     double cost = -1;
 
-     ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL));
 
-     EXPECT_EQ(48.5, cost);
 
-   }
 
-   // Cost and residuals, no jacobian.
 
-   {
 
-     double cost = -1;
 
-     double residuals[2] = { -2, -2 };
 
-     ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL, NULL));
 
-     EXPECT_EQ(48.5, cost);
 
-     EXPECT_EQ(4, residuals[0]);
 
-     EXPECT_EQ(9, residuals[1]);
 
-   }
 
-   // Cost, residuals, and jacobian.
 
-   {
 
-     double cost = -1;
 
-     double residuals[2] = { -2, -2};
 
-     SetSparseMatrixConstant(jacobian.get(), -1);
 
-     ASSERT_TRUE(evaluator->Evaluate(state,
 
-                                     &cost,
 
-                                     residuals,
 
-                                     NULL,
 
-                                     jacobian.get()));
 
-     EXPECT_EQ(48.5, cost);
 
-     EXPECT_EQ(4, residuals[0]);
 
-     EXPECT_EQ(9, residuals[1]);
 
-     Matrix actual_jacobian;
 
-     jacobian->ToDenseMatrix(&actual_jacobian);
 
-     Matrix expected_jacobian(2, 2);
 
-     expected_jacobian
 
-         << 2 * state[0], 0,
 
-            0, 2 * state[1];
 
-     EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all())
 
-         << "Actual:\n" << actual_jacobian
 
-         << "\nExpected:\n" << expected_jacobian;
 
-   }
 
- }
 
- // Simple cost function used for testing Evaluator::Evaluate.
 
- //
 
- // r_i = i - (j + 1) * x_ij^2
 
- template <int kNumResiduals, int kNumParameterBlocks >
 
- class QuadraticCostFunction : public CostFunction {
 
-  public:
 
-   QuadraticCostFunction() {
 
-     CHECK_GT(kNumResiduals, 0);
 
-     CHECK_GT(kNumParameterBlocks, 0);
 
-     set_num_residuals(kNumResiduals);
 
-     for (int i = 0; i < kNumParameterBlocks; ++i) {
 
-       mutable_parameter_block_sizes()->push_back(kNumResiduals);
 
-     }
 
-   }
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     for (int i = 0; i < kNumResiduals; ++i) {
 
-       residuals[i] = i;
 
-       for (int j = 0; j < kNumParameterBlocks; ++j) {
 
-         residuals[i] -= (j + 1.0) * parameters[j][i] * parameters[j][i];
 
-       }
 
-     }
 
-     if (jacobians == NULL) {
 
-       return true;
 
-     }
 
-     for (int j = 0; j < kNumParameterBlocks; ++j) {
 
-       if (jacobians[j] != NULL) {
 
-         MatrixRef(jacobians[j], kNumResiduals, kNumResiduals) =
 
-             (-2.0 * (j + 1.0) *
 
-              ConstVectorRef(parameters[j], kNumResiduals)).asDiagonal();
 
-       }
 
-     }
 
-     return true;
 
-   }
 
- };
 
- // Convert a CRSMatrix to a dense Eigen matrix.
 
- void CRSToDenseMatrix(const CRSMatrix& input, Matrix* output) {
 
-   Matrix& m = *CHECK_NOTNULL(output);
 
-   m.resize(input.num_rows, input.num_cols);
 
-   m.setZero();
 
-   for (int row = 0; row < input.num_rows; ++row) {
 
-     for (int j = input.rows[row]; j < input.rows[row + 1]; ++j) {
 
-       const int col = input.cols[j];
 
-       m(row, col) = input.values[j];
 
-     }
 
-   }
 
- }
 
- class StaticEvaluateTest : public ::testing::Test {
 
-  protected:
 
-   void SetUp() {
 
-     for (int i = 0; i < 6; ++i) {
 
-       parameters_[i] = static_cast<double>(i + 1);
 
-     }
 
-     CostFunction* cost_function = new QuadraticCostFunction<2, 2>;
 
-     // f(x, y)
 
-     problem_.AddResidualBlock(cost_function,
 
-                               NULL,
 
-                               parameters_,
 
-                               parameters_ + 2);
 
-     // g(y, z)
 
-     problem_.AddResidualBlock(cost_function,
 
-                               NULL, parameters_ + 2,
 
-                               parameters_ + 4);
 
-     // h(z, x)
 
-     problem_.AddResidualBlock(cost_function,
 
-                               NULL,
 
-                               parameters_ + 4,
 
-                               parameters_);
 
-   }
 
-   void EvaluateAndCompare(const int expected_num_rows,
 
-                           const int expected_num_cols,
 
-                           const double expected_cost,
 
-                           const double* expected_residuals,
 
-                           const double* expected_gradient,
 
-                           const double* expected_jacobian) {
 
-     double cost;
 
-     vector<double> residuals;
 
-     vector<double> gradient;
 
-     CRSMatrix jacobian;
 
-     EXPECT_TRUE(Evaluator::Evaluate(
 
-                     problem_.mutable_program(),
 
-                     1,
 
-                     &cost,
 
-                     expected_residuals != NULL ? &residuals : NULL,
 
-                     expected_gradient != NULL ? &gradient : NULL,
 
-                     expected_jacobian != NULL ? &jacobian : NULL));
 
-     if (expected_residuals != NULL) {
 
-       EXPECT_EQ(residuals.size(), expected_num_rows);
 
-     }
 
-     if (expected_gradient != NULL) {
 
-       EXPECT_EQ(gradient.size(), expected_num_cols);
 
-     }
 
-     if (expected_jacobian != NULL) {
 
-       EXPECT_EQ(jacobian.num_rows, expected_num_rows);
 
-       EXPECT_EQ(jacobian.num_cols, expected_num_cols);
 
-     }
 
-     Matrix dense_jacobian;
 
-     if (expected_jacobian != NULL) {
 
-       CRSToDenseMatrix(jacobian, &dense_jacobian);
 
-     }
 
-     CompareEvaluations(expected_num_rows,
 
-                        expected_num_cols,
 
-                        expected_cost,
 
-                        expected_residuals,
 
-                        expected_gradient,
 
-                        expected_jacobian,
 
-                        cost,
 
-                        residuals.size() > 0 ? &residuals[0] : NULL,
 
-                        gradient.size() > 0 ? &gradient[0] : NULL,
 
-                        dense_jacobian.data());
 
-   }
 
-   void CheckAllEvaluationCombinations(const ExpectedEvaluation& expected ) {
 
-     for (int i = 0; i < 8; ++i) {
 
-       EvaluateAndCompare(expected.num_rows,
 
-                          expected.num_cols,
 
-                          expected.cost,
 
-                          (i & 1) ? expected.residuals : NULL,
 
-                          (i & 2) ? expected.gradient  : NULL,
 
-                          (i & 4) ? expected.jacobian  : NULL);
 
-     }
 
-     // The Evaluate call should only depend on the parameter block
 
-     // values in the user provided pointers, and the current state of
 
-     // the parameter block should not matter. So, create a new
 
-     // parameters vector, and update the parameter block states with
 
-     // it. The results from the Evaluate call should not change.
 
-     double new_parameters[6];
 
-     for (int i = 0; i < 6; ++i) {
 
-       new_parameters[i] = 0.0;
 
-     }
 
-     problem_.mutable_program()->StateVectorToParameterBlocks(new_parameters);
 
-     for (int i = 0; i < 8; ++i) {
 
-       EvaluateAndCompare(expected.num_rows,
 
-                          expected.num_cols,
 
-                          expected.cost,
 
-                          (i & 1) ? expected.residuals : NULL,
 
-                          (i & 2) ? expected.gradient  : NULL,
 
-                          (i & 4) ? expected.jacobian  : NULL);
 
-     }
 
-   }
 
-   ProblemImpl problem_;
 
-   double parameters_[6];
 
- };
 
- TEST_F(StaticEvaluateTest, MultipleParameterAndResidualBlocks) {
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     6, 6,
 
-     // Cost
 
-     7607.0,
 
-     // Residuals
 
-     { -19.0, -35.0,  // f
 
-       -59.0, -87.0,  // g
 
-       -27.0, -43.0   // h
 
-     },
 
-     // Gradient
 
-     {  146.0,  484.0,   // x
 
-        582.0, 1256.0,   // y
 
-       1450.0, 2604.0,   // z
 
-     },
 
-     // Jacobian
 
-     //                       x             y             z
 
-     { /* f(x, y) */ -2.0,  0.0, -12.0,   0.0,   0.0,   0.0,
 
-                      0.0, -4.0,   0.0, -16.0,   0.0,   0.0,
 
-       /* g(y, z) */  0.0,  0.0,  -6.0,   0.0, -20.0,   0.0,
 
-                      0.0,  0.0,   0.0,  -8.0,   0.0, -24.0,
 
-       /* h(z, x) */ -4.0,  0.0,   0.0,   0.0, -10.0,   0.0,
 
-                      0.0, -8.0,   0.0,   0.0,   0.0, -12.0
 
-     }
 
-   };
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_F(StaticEvaluateTest, ConstantParameterBlock) {
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     6, 6,
 
-     // Cost
 
-     7607.0,
 
-     // Residuals
 
-     { -19.0, -35.0,  // f
 
-       -59.0, -87.0,  // g
 
-       -27.0, -43.0   // h
 
-     },
 
-     // Gradient
 
-     {  146.0,  484.0,  // x
 
-          0.0,    0.0,  // y
 
-       1450.0, 2604.0,  // z
 
-     },
 
-     // Jacobian
 
-     //                       x             y             z
 
-     { /* f(x, y) */ -2.0,  0.0,   0.0,   0.0,   0.0,   0.0,
 
-                      0.0, -4.0,   0.0,   0.0,   0.0,   0.0,
 
-       /* g(y, z) */  0.0,  0.0,   0.0,   0.0, -20.0,   0.0,
 
-                      0.0,  0.0,   0.0,   0.0,   0.0, -24.0,
 
-       /* h(z, x) */ -4.0,  0.0,   0.0,   0.0, -10.0,   0.0,
 
-                      0.0, -8.0,   0.0,   0.0,   0.0, -12.0
 
-     }
 
-   };
 
-   problem_.SetParameterBlockConstant(parameters_ + 2);
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- TEST_F(StaticEvaluateTest, LocalParameterization) {
 
-   ExpectedEvaluation expected = {
 
-     // Rows/columns
 
-     6, 5,
 
-     // Cost
 
-     7607.0,
 
-     // Residuals
 
-     { -19.0, -35.0,  // f
 
-       -59.0, -87.0,  // g
 
-       -27.0, -43.0   // h
 
-     },
 
-     // Gradient
 
-     {  146.0,  484.0,  // x
 
-       1256.0,          // y with SubsetParameterization
 
-       1450.0, 2604.0,  // z
 
-     },
 
-     // Jacobian
 
-     //                       x      y             z
 
-     { /* f(x, y) */ -2.0,  0.0,   0.0,   0.0,   0.0,
 
-                      0.0, -4.0, -16.0,   0.0,   0.0,
 
-       /* g(y, z) */  0.0,  0.0,   0.0, -20.0,   0.0,
 
-                      0.0,  0.0,  -8.0,   0.0, -24.0,
 
-       /* h(z, x) */ -4.0,  0.0,   0.0, -10.0,   0.0,
 
-                      0.0, -8.0,   0.0,   0.0, -12.0
 
-     }
 
-   };
 
-   vector<int> constant_parameters;
 
-   constant_parameters.push_back(0);
 
-   problem_.SetParameterization(parameters_ + 2,
 
-                                new SubsetParameterization(2,
 
-                                                           constant_parameters));
 
-   CheckAllEvaluationCombinations(expected);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |