| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2013 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//         mierle@gmail.com (Keir Mierle)//// Finite differencing routine used by NumericDiffCostFunction.#ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_#define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_#include <cstring>#include "Eigen/Dense"#include "ceres/cost_function.h"#include "ceres/internal/scoped_ptr.h"#include "ceres/internal/variadic_evaluate.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {namespace internal {// Helper templates that allow evaluation of a variadic functor or a// CostFunction object.template <typename CostFunctor,          int N0, int N1, int N2, int N3, int N4,          int N5, int N6, int N7, int N8, int N9 >bool EvaluateImpl(const CostFunctor* functor,                  double const* const* parameters,                  double* residuals,                  const void* /* NOT USED */) {  return VariadicEvaluate<CostFunctor,                          double,                          N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(                              *functor,                              parameters,                              residuals);}template <typename CostFunctor,          int N0, int N1, int N2, int N3, int N4,          int N5, int N6, int N7, int N8, int N9 >bool EvaluateImpl(const CostFunctor* functor,                  double const* const* parameters,                  double* residuals,                  const CostFunction* /* NOT USED */) {  return functor->Evaluate(parameters, residuals, NULL);}// This is split from the main class because C++ doesn't allow partial template// specializations for member functions. The alternative is to repeat the main// class for differing numbers of parameters, which is also unfortunate.template <typename CostFunctor,          NumericDiffMethod kMethod,          int kNumResiduals,          int N0, int N1, int N2, int N3, int N4,          int N5, int N6, int N7, int N8, int N9,          int kParameterBlock,          int kParameterBlockSize>struct NumericDiff {  // Mutates parameters but must restore them before return.  static bool EvaluateJacobianForParameterBlock(      const CostFunctor* functor,      double const* residuals_at_eval_point,      const double relative_step_size,      double **parameters,      double *jacobian) {    using Eigen::Map;    using Eigen::Matrix;    using Eigen::RowMajor;    using Eigen::ColMajor;    typedef Matrix<double, kNumResiduals, 1> ResidualVector;    typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;    typedef Matrix<double, kNumResiduals, kParameterBlockSize,                   (kParameterBlockSize == 1 &&                    kNumResiduals > 1) ? ColMajor : RowMajor> JacobianMatrix;    Map<JacobianMatrix> parameter_jacobian(jacobian,                                           kNumResiduals,                                           kParameterBlockSize);    // Mutate 1 element at a time and then restore.    Map<ParameterVector> x_plus_delta(parameters[kParameterBlock],                                      kParameterBlockSize);    ParameterVector x(x_plus_delta);    ParameterVector step_size = x.array().abs() * relative_step_size;    // To handle cases where a parameter is exactly zero, instead use    // the mean step_size for the other dimensions. If all the    // parameters are zero, there's no good answer. Take    // relative_step_size as a guess and hope for the best.    const double fallback_step_size =        (step_size.sum() == 0)        ? relative_step_size        : step_size.sum() / step_size.rows();    // For each parameter in the parameter block, use finite differences to    // compute the derivative for that parameter.    for (int j = 0; j < kParameterBlockSize; ++j) {      const double delta =          (step_size(j) == 0.0) ? fallback_step_size : step_size(j);      x_plus_delta(j) = x(j) + delta;      double residuals[kNumResiduals];  // NOLINT      if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(              functor, parameters, residuals, functor)) {        return false;      }      // Compute this column of the jacobian in 3 steps:      // 1. Store residuals for the forward part.      // 2. Subtract residuals for the backward (or 0) part.      // 3. Divide out the run.      parameter_jacobian.col(j) =          Map<const ResidualVector>(residuals, kNumResiduals);      double one_over_delta = 1.0 / delta;      if (kMethod == CENTRAL) {        // Compute the function on the other side of x(j).        x_plus_delta(j) = x(j) - delta;        if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(                functor, parameters, residuals, functor)) {          return false;        }        parameter_jacobian.col(j) -=            Map<ResidualVector>(residuals, kNumResiduals, 1);        one_over_delta /= 2;      } else {        // Forward difference only; reuse existing residuals evaluation.        parameter_jacobian.col(j) -=            Map<const ResidualVector>(residuals_at_eval_point, kNumResiduals);      }      x_plus_delta(j) = x(j);  // Restore x_plus_delta.      // Divide out the run to get slope.      parameter_jacobian.col(j) *= one_over_delta;    }    return true;  }};template <typename CostFunctor,          NumericDiffMethod kMethod,          int kNumResiduals,          int N0, int N1, int N2, int N3, int N4,          int N5, int N6, int N7, int N8, int N9,          int kParameterBlock>struct NumericDiff<CostFunctor, kMethod, kNumResiduals,                   N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,                   kParameterBlock, 0> {  // Mutates parameters but must restore them before return.  static bool EvaluateJacobianForParameterBlock(      const CostFunctor* functor,      double const* residuals_at_eval_point,      const double relative_step_size,      double **parameters,      double *jacobian) {    LOG(FATAL) << "Control should never reach here.";    return true;  }};}  // namespace internal}  // namespace ceres#endif  // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
 |