| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //         tbennun@gmail.com (Tal Ben-Nun)
 
- #include "ceres/numeric_diff_test_utils.h"
 
- #include <algorithm>
 
- #include <cmath>
 
- #include "ceres/cost_function.h"
 
- #include "ceres/internal/macros.h"
 
- #include "ceres/test_util.h"
 
- #include "ceres/types.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- bool EasyFunctor::operator()(const double* x1,
 
-                              const double* x2,
 
-                              double* residuals) const {
 
-   residuals[0] = residuals[1] = residuals[2] = 0;
 
-   for (int i = 0; i < 5; ++i) {
 
-     residuals[0] += x1[i] * x2[i];
 
-     residuals[2] += x2[i] * x2[i];
 
-   }
 
-   residuals[1] = residuals[0] * residuals[0];
 
-   return true;
 
- }
 
- void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
 
-     const CostFunction& cost_function,
 
-     NumericDiffMethodType method) const {
 
-   // The x1[0] is made deliberately small to test the performance near
 
-   // zero.
 
-   double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };
 
-   double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
 
-   double *parameters[] = { &x1[0], &x2[0] };
 
-   double dydx1[15];  // 3 x 5, row major.
 
-   double dydx2[15];  // 3 x 5, row major.
 
-   double *jacobians[2] = { &dydx1[0], &dydx2[0] };
 
-   double residuals[3] = {-1e-100, -2e-100, -3e-100 };
 
-   ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
 
-                                      &residuals[0],
 
-                                      &jacobians[0]));
 
-   double expected_residuals[3];
 
-   EasyFunctor functor;
 
-   functor(x1, x2, expected_residuals);
 
-   EXPECT_EQ(expected_residuals[0], residuals[0]);
 
-   EXPECT_EQ(expected_residuals[1], residuals[1]);
 
-   EXPECT_EQ(expected_residuals[2], residuals[2]);
 
-   double tolerance = 0.0;
 
-   switch (method) {
 
-     default:
 
-     case CENTRAL:
 
-       tolerance = 3e-9;
 
-       break;
 
-     case FORWARD:
 
-       tolerance = 2e-5;
 
-       break;
 
-     case RIDDERS:
 
-       tolerance = 1e-13;
 
-       break;
 
-   }
 
-   for (int i = 0; i < 5; ++i) {
 
-     ExpectClose(x2[i],                    dydx1[5 * 0 + i], tolerance);  // y1
 
-     ExpectClose(x1[i],                    dydx2[5 * 0 + i], tolerance);
 
-     ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance);  // y2
 
-     ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
 
-     ExpectClose(0.0,                      dydx1[5 * 2 + i], tolerance);  // y3
 
-     ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], tolerance);
 
-   }
 
- }
 
- bool TranscendentalFunctor::operator()(const double* x1,
 
-                                        const double* x2,
 
-                                        double* residuals) const {
 
-   double x1x2 = 0;
 
-   for (int i = 0; i < 5; ++i) {
 
-     x1x2 += x1[i] * x2[i];
 
-   }
 
-   residuals[0] = sin(x1x2);
 
-   residuals[1] = exp(-x1x2 / 10);
 
-   return true;
 
- }
 
- void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
 
-     const CostFunction& cost_function,
 
-     NumericDiffMethodType method) const {
 
-   struct {
 
-     double x1[5];
 
-     double x2[5];
 
-   } kTests[] = {
 
-     { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros.
 
-       { 9.0, 9.0, 5.0, 5.0, 1.0 },
 
-     },
 
-     { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1.
 
-       { 9.0, 9.0, 5.0, 5.0, 1.0 },
 
-     },
 
-     { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2.
 
-       { 0.0, 9.0, 0.0, 5.0, 0.0 },
 
-     },
 
-     { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1.
 
-       { 9.0, 9.0, 5.0, 5.0, 1.0 },
 
-     },
 
-     { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2.
 
-       { 0.0, 0.0, 0.0, 0.0, 0.0 },
 
-     },
 
-     { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros.
 
-       { 0.0, 0.0, 0.0, 0.0, 0.0 },
 
-     },
 
-   };
 
-   for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
 
-     double *x1 = &(kTests[k].x1[0]);
 
-     double *x2 = &(kTests[k].x2[0]);
 
-     double *parameters[] = { x1, x2 };
 
-     double dydx1[10];
 
-     double dydx2[10];
 
-     double *jacobians[2] = { &dydx1[0], &dydx2[0] };
 
-     double residuals[2];
 
-     ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
 
-                                        &residuals[0],
 
-                                        &jacobians[0]));
 
-     double x1x2 = 0;
 
-     for (int i = 0; i < 5; ++i) {
 
-       x1x2 += x1[i] * x2[i];
 
-     }
 
-     double tolerance = 0.0;
 
-     switch (method) {
 
-       default:
 
-       case CENTRAL:
 
-         tolerance = 2e-7;
 
-         break;
 
-       case FORWARD:
 
-         tolerance = 2e-5;
 
-         break;
 
-       case RIDDERS:
 
-         tolerance = 3e-12;
 
-         break;
 
-     }
 
-     for (int i = 0; i < 5; ++i) {
 
-       ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], tolerance);
 
-       ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], tolerance);
 
-       ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
 
-       ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
 
-     }
 
-   }
 
- }
 
- bool ExponentialFunctor::operator()(const double* x1,
 
-                                     double* residuals) const {
 
-   residuals[0] = exp(x1[0]);
 
-   return true;
 
- }
 
- void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
 
-     const CostFunction& cost_function) const {
 
-   // Evaluating the functor at specific points for testing.
 
-   double kTests[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
 
-   // Minimal tolerance w.r.t. the cost function and the tests.
 
-   const double kTolerance = 2e-14;
 
-   for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
 
-     double *parameters[] = { &kTests[k] };
 
-     double dydx;
 
-     double *jacobians[1] = { &dydx };
 
-     double residual;
 
-     ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
 
-                                        &residual,
 
-                                        &jacobians[0]));
 
-     double expected_result = exp(kTests[k]);
 
-     // Expect residual to be close to exp(x).
 
-     ExpectClose(residual, expected_result, kTolerance);
 
-     // Check evaluated differences. dydx should also be close to exp(x).
 
-     ExpectClose(dydx, expected_result, kTolerance);
 
-   }
 
- }
 
- bool RandomizedFunctor::operator()(const double* x1,
 
-                                    double* residuals) const {
 
-   double random_value = static_cast<double>(rand()) /
 
-       static_cast<double>(RAND_MAX);
 
-   // Normalize noise to [-factor, factor].
 
-   random_value *= 2.0;
 
-   random_value -= 1.0;
 
-   random_value *= noise_factor_;
 
-   residuals[0] = x1[0] * x1[0] + random_value;
 
-   return true;
 
- }
 
- void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
 
-     const CostFunction& cost_function) const {
 
-   double kTests[] = { 0.0, 1.0, 3.0, 4.0, 50.0 };
 
-   const double kTolerance = 2e-4;
 
-   // Initialize random number generator with given seed.
 
-   srand(random_seed_);
 
-   for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {
 
-     double *parameters[] = { &kTests[k] };
 
-     double dydx;
 
-     double *jacobians[1] = { &dydx };
 
-     double residual;
 
-     ASSERT_TRUE(cost_function.Evaluate(¶meters[0],
 
-                                        &residual,
 
-                                        &jacobians[0]));
 
-     // Expect residual to be close to x^2 w.r.t. noise factor.
 
-     ExpectClose(residual, kTests[k] * kTests[k], noise_factor_);
 
-     // Check evaluated differences. (dy/dx = ~2x)
 
-     ExpectClose(dydx, 2 * kTests[k], kTolerance);
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |