| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- //         sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // Create CostFunctions as needed by the least squares framework with jacobians
 
- // computed via numeric (a.k.a. finite) differentiation. For more details see
 
- // http://en.wikipedia.org/wiki/Numerical_differentiation.
 
- //
 
- // To get an numerically differentiated cost function, you must define
 
- // a class with a operator() (a functor) that computes the residuals.
 
- //
 
- // The function must write the computed value in the last argument
 
- // (the only non-const one) and return true to indicate success.
 
- // Please see cost_function.h for details on how the return value
 
- // maybe used to impose simple constraints on the parameter block.
 
- //
 
- // For example, consider a scalar error e = k - x'y, where both x and y are
 
- // two-dimensional column vector parameters, the prime sign indicates
 
- // transposition, and k is a constant. The form of this error, which is the
 
- // difference between a constant and an expression, is a common pattern in least
 
- // squares problems. For example, the value x'y might be the model expectation
 
- // for a series of measurements, where there is an instance of the cost function
 
- // for each measurement k.
 
- //
 
- // The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
 
- // the squaring is implicitly done by the optimization framework.
 
- //
 
- // To write an numerically-differentiable cost function for the above model, first
 
- // define the object
 
- //
 
- //   class MyScalarCostFunctor {
 
- //     MyScalarCostFunctor(double k): k_(k) {}
 
- //
 
- //     bool operator()(const double* const x,
 
- //                     const double* const y,
 
- //                     double* residuals) const {
 
- //       residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
 
- //       return true;
 
- //     }
 
- //
 
- //    private:
 
- //     double k_;
 
- //   };
 
- //
 
- // Note that in the declaration of operator() the input parameters x
 
- // and y come first, and are passed as const pointers to arrays of
 
- // doubles. If there were three input parameters, then the third input
 
- // parameter would come after y. The output is always the last
 
- // parameter, and is also a pointer to an array. In the example above,
 
- // the residual is a scalar, so only residuals[0] is set.
 
- //
 
- // Then given this class definition, the numerically differentiated
 
- // cost function with central differences used for computing the
 
- // derivative can be constructed as follows.
 
- //
 
- //   CostFunction* cost_function
 
- //       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
 
- //           new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^
 
- //                                                             |     |  |  |
 
- //                                 Finite Differencing Scheme -+     |  |  |
 
- //                                 Dimension of residual ------------+  |  |
 
- //                                 Dimension of x ----------------------+  |
 
- //                                 Dimension of y -------------------------+
 
- //
 
- // In this example, there is usually an instance for each measurement of k.
 
- //
 
- // In the instantiation above, the template parameters following
 
- // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
 
- // a 1-dimensional output from two arguments, both 2-dimensional.
 
- //
 
- // NumericDiffCostFunction also supports cost functions with a
 
- // runtime-determined number of residuals. For example:
 
- //
 
- //   CostFunction* cost_function
 
- //       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
 
- //           new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^
 
- //           TAKE_OWNERSHIP,                                            |     |  |
 
- //           runtime_number_of_residuals); <----+                       |     |  |
 
- //                                              |                       |     |  |
 
- //                                              |                       |     |  |
 
- //             Actual number of residuals ------+                       |     |  |
 
- //             Indicate dynamic number of residuals --------------------+     |  |
 
- //             Dimension of x ------------------------------------------------+  |
 
- //             Dimension of y ---------------------------------------------------+
 
- //
 
- // The framework can currently accommodate cost functions of up to 10
 
- // independent variables, and there is no limit on the dimensionality
 
- // of each of them.
 
- //
 
- // The central difference method is considerably more accurate at the cost of
 
- // twice as many function evaluations than forward difference. Consider using
 
- // central differences begin with, and only after that works, trying forward
 
- // difference to improve performance.
 
- //
 
- // WARNING #1: A common beginner's error when first using
 
- // NumericDiffCostFunction is to get the sizing wrong. In particular,
 
- // there is a tendency to set the template parameters to (dimension of
 
- // residual, number of parameters) instead of passing a dimension
 
- // parameter for *every parameter*. In the example above, that would
 
- // be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
 
- // argument. Please be careful when setting the size parameters.
 
- //
 
- ////////////////////////////////////////////////////////////////////////////
 
- ////////////////////////////////////////////////////////////////////////////
 
- //
 
- // ALTERNATE INTERFACE
 
- //
 
- // For a variety of reasons, including compatibility with legacy code,
 
- // NumericDiffCostFunction can also take CostFunction objects as
 
- // input. The following describes how.
 
- //
 
- // To get a numerically differentiated cost function, define a
 
- // subclass of CostFunction such that the Evaluate() function ignores
 
- // the jacobian parameter. The numeric differentiation wrapper will
 
- // fill in the jacobian parameter if necessary by repeatedly calling
 
- // the Evaluate() function with small changes to the appropriate
 
- // parameters, and computing the slope. For performance, the numeric
 
- // differentiation wrapper class is templated on the concrete cost
 
- // function, even though it could be implemented only in terms of the
 
- // virtual CostFunction interface.
 
- //
 
- // The numerically differentiated version of a cost function for a cost function
 
- // can be constructed as follows:
 
- //
 
- //   CostFunction* cost_function
 
- //       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
 
- //           new MyCostFunction(...), TAKE_OWNERSHIP);
 
- //
 
- // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
 
- // respectively. Look at the tests for a more detailed example.
 
- //
 
- // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
 
- #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 
- #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 
- #include "Eigen/Dense"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/internal/numeric_diff.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/numeric_diff_options.h"
 
- #include "ceres/sized_cost_function.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- template <typename CostFunctor,
 
-           NumericDiffMethodType method = CENTRAL,
 
-           int kNumResiduals = 0,  // Number of residuals, or ceres::DYNAMIC
 
-           int N0 = 0,   // Number of parameters in block 0.
 
-           int N1 = 0,   // Number of parameters in block 1.
 
-           int N2 = 0,   // Number of parameters in block 2.
 
-           int N3 = 0,   // Number of parameters in block 3.
 
-           int N4 = 0,   // Number of parameters in block 4.
 
-           int N5 = 0,   // Number of parameters in block 5.
 
-           int N6 = 0,   // Number of parameters in block 6.
 
-           int N7 = 0,   // Number of parameters in block 7.
 
-           int N8 = 0,   // Number of parameters in block 8.
 
-           int N9 = 0>   // Number of parameters in block 9.
 
- class NumericDiffCostFunction
 
-     : public SizedCostFunction<kNumResiduals,
 
-                                N0, N1, N2, N3, N4,
 
-                                N5, N6, N7, N8, N9> {
 
-  public:
 
-   NumericDiffCostFunction(
 
-       CostFunctor* functor,
 
-       Ownership ownership = TAKE_OWNERSHIP,
 
-       int num_residuals = kNumResiduals,
 
-       const NumericDiffOptions& options = NumericDiffOptions())
 
-       : functor_(functor),
 
-         ownership_(ownership),
 
-         options_(options) {
 
-     if (kNumResiduals == DYNAMIC) {
 
-       SizedCostFunction<kNumResiduals,
 
-                         N0, N1, N2, N3, N4,
 
-                         N5, N6, N7, N8, N9>
 
-           ::set_num_residuals(num_residuals);
 
-     }
 
-   }
 
-   // Deprecated. New users should avoid using this constructor. Instead, use the
 
-   // constructor with NumericDiffOptions.
 
-   NumericDiffCostFunction(CostFunctor* functor,
 
-                           Ownership ownership,
 
-                           int num_residuals,
 
-                           const double relative_step_size)
 
-       :functor_(functor),
 
-        ownership_(ownership),
 
-        options_() {
 
-     LOG(WARNING) << "This constructor is deprecated and will be removed in "
 
-                     "a future version. Please use the NumericDiffOptions "
 
-                     "constructor instead.";
 
-     if (kNumResiduals == DYNAMIC) {
 
-       SizedCostFunction<kNumResiduals,
 
-                         N0, N1, N2, N3, N4,
 
-                         N5, N6, N7, N8, N9>
 
-           ::set_num_residuals(num_residuals);
 
-     }
 
-     options_.relative_step_size = relative_step_size;
 
-   }
 
-   ~NumericDiffCostFunction() {
 
-     if (ownership_ != TAKE_OWNERSHIP) {
 
-       functor_.release();
 
-     }
 
-   }
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     using internal::FixedArray;
 
-     using internal::NumericDiff;
 
-     const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
 
-     const int kNumParameterBlocks =
 
-         (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +
 
-         (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);
 
-     // Get the function value (residuals) at the the point to evaluate.
 
-     if (!internal::EvaluateImpl<CostFunctor,
 
-                                 N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
 
-                                     functor_.get(),
 
-                                     parameters,
 
-                                     residuals,
 
-                                     functor_.get())) {
 
-       return false;
 
-     }
 
-     if (jacobians == NULL) {
 
-       return true;
 
-     }
 
-     // Create a copy of the parameters which will get mutated.
 
-     FixedArray<double> parameters_copy(kNumParameters);
 
-     FixedArray<double*> parameters_reference_copy(kNumParameterBlocks);
 
-     parameters_reference_copy[0] = parameters_copy.get();
 
-     if (N1) parameters_reference_copy[1] = parameters_reference_copy[0] + N0;
 
-     if (N2) parameters_reference_copy[2] = parameters_reference_copy[1] + N1;
 
-     if (N3) parameters_reference_copy[3] = parameters_reference_copy[2] + N2;
 
-     if (N4) parameters_reference_copy[4] = parameters_reference_copy[3] + N3;
 
-     if (N5) parameters_reference_copy[5] = parameters_reference_copy[4] + N4;
 
-     if (N6) parameters_reference_copy[6] = parameters_reference_copy[5] + N5;
 
-     if (N7) parameters_reference_copy[7] = parameters_reference_copy[6] + N6;
 
-     if (N8) parameters_reference_copy[8] = parameters_reference_copy[7] + N7;
 
-     if (N9) parameters_reference_copy[9] = parameters_reference_copy[8] + N8;
 
- #define CERES_COPY_PARAMETER_BLOCK(block)                               \
 
-   if (N ## block) memcpy(parameters_reference_copy[block],              \
 
-                          parameters[block],                             \
 
-                          sizeof(double) * N ## block);  // NOLINT
 
-     CERES_COPY_PARAMETER_BLOCK(0);
 
-     CERES_COPY_PARAMETER_BLOCK(1);
 
-     CERES_COPY_PARAMETER_BLOCK(2);
 
-     CERES_COPY_PARAMETER_BLOCK(3);
 
-     CERES_COPY_PARAMETER_BLOCK(4);
 
-     CERES_COPY_PARAMETER_BLOCK(5);
 
-     CERES_COPY_PARAMETER_BLOCK(6);
 
-     CERES_COPY_PARAMETER_BLOCK(7);
 
-     CERES_COPY_PARAMETER_BLOCK(8);
 
-     CERES_COPY_PARAMETER_BLOCK(9);
 
- #undef CERES_COPY_PARAMETER_BLOCK
 
- #define CERES_EVALUATE_JACOBIAN_FOR_BLOCK(block)                        \
 
-     if (N ## block && jacobians[block] != NULL) {                       \
 
-       if (!NumericDiff<CostFunctor,                                     \
 
-                        method,                                          \
 
-                        kNumResiduals,                                   \
 
-                        N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,          \
 
-                        block,                                           \
 
-                        N ## block >::EvaluateJacobianForParameterBlock( \
 
-                            functor_.get(),                              \
 
-                            residuals,                                   \
 
-                            options_,                                    \
 
-                           SizedCostFunction<kNumResiduals,              \
 
-                            N0, N1, N2, N3, N4,                          \
 
-                            N5, N6, N7, N8, N9>::num_residuals(),        \
 
-                            block,                                       \
 
-                            N ## block,                                  \
 
-                            parameters_reference_copy.get(),             \
 
-                            jacobians[block])) {                         \
 
-         return false;                                                   \
 
-       }                                                                 \
 
-     }
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(0);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(1);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(2);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(3);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(4);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(5);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(6);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(7);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(8);
 
-     CERES_EVALUATE_JACOBIAN_FOR_BLOCK(9);
 
- #undef CERES_EVALUATE_JACOBIAN_FOR_BLOCK
 
-     return true;
 
-   }
 
-  private:
 
-   internal::scoped_ptr<CostFunctor> functor_;
 
-   Ownership ownership_;
 
-   NumericDiffOptions options_;
 
- };
 
- }  // namespace ceres
 
- #endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 
 
  |