| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- #include "ceres/gradient_checking_cost_function.h"
 
- #include <cmath>
 
- #include <vector>
 
- #include <glog/logging.h>
 
- #include "gmock/gmock.h"
 
- #include "gtest/gtest.h"
 
- #include "ceres/mock_log.h"
 
- #include "ceres/problem_impl.h"
 
- #include "ceres/program.h"
 
- #include "ceres/parameter_block.h"
 
- #include "ceres/residual_block.h"
 
- #include "ceres/random.h"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/local_parameterization.h"
 
- #include "ceres/loss_function.h"
 
- #include "ceres/sized_cost_function.h"
 
- #include "ceres/types.h"
 
- using testing::AllOf;
 
- using testing::AnyNumber;
 
- using testing::HasSubstr;
 
- using testing::ScopedMockLog;
 
- using testing::_;
 
- namespace ceres {
 
- namespace internal {
 
- // Pick a (non-quadratic) function whose derivative are easy:
 
- //
 
- //    f = exp(- a' x).
 
- //   df = - f a.
 
- //
 
- // where 'a' is a vector of the same size as 'x'. In the block
 
- // version, they are both block vectors, of course.
 
- template<int bad_block = 1, int bad_variable = 2>
 
- class TestTerm : public CostFunction {
 
-  public:
 
-   // The constructor of this function needs to know the number
 
-   // of blocks desired, and the size of each block.
 
-   TestTerm(int arity, int const *dim) : arity_(arity) {
 
-     // Make 'arity' random vectors.
 
-     a_.resize(arity_);
 
-     for (int j = 0; j < arity_; ++j) {
 
-       a_[j].resize(dim[j]);
 
-       for (int u = 0; u < dim[j]; ++u) {
 
-         a_[j][u] = 2.0 * RandDouble() - 1.0;
 
-       }
 
-     }
 
-     for (int i = 0; i < arity_; i++) {
 
-       mutable_parameter_block_sizes()->push_back(dim[i]);
 
-     }
 
-     set_num_residuals(1);
 
-   }
 
-   bool Evaluate(double const* const* parameters,
 
-                 double* residuals,
 
-                 double** jacobians) const {
 
-     // Compute a . x.
 
-     double ax = 0;
 
-     for (int j = 0; j < arity_; ++j) {
 
-       for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
 
-         ax += a_[j][u] * parameters[j][u];
 
-       }
 
-     }
 
-     // This is the cost, but also appears as a factor
 
-     // in the derivatives.
 
-     double f = *residuals = exp(-ax);
 
-     // Accumulate 1st order derivatives.
 
-     if (jacobians) {
 
-       for (int j = 0; j < arity_; ++j) {
 
-         if (jacobians[j]) {
 
-           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
 
-             // See comments before class.
 
-             jacobians[j][u] = - f * a_[j][u];
 
-             if (bad_block == j && bad_variable == u) {
 
-               // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry
 
-               // like what happens when users make an error in their jacobian
 
-               // computations. This should get detected.
 
-               LOG(INFO) << "Poisoning jacobian for parameter block " << j
 
-                         << ", row 0, column " << u;
 
-               jacobians[j][u] += 500;
 
-             }
 
-           }
 
-         }
 
-       }
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   int arity_;
 
-   vector<vector<double> > a_;
 
- };
 
- TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) {
 
-   srand(5);
 
-   // Test with 3 blocks of size 2, 3 and 4.
 
-   int const arity = 3;
 
-   int const dim[arity] = { 2, 3, 4 };
 
-   // Make a random set of blocks.
 
-   vector<double*> parameters(arity);
 
-   for (int j = 0; j < arity; ++j) {
 
-     parameters[j] = new double[dim[j]];
 
-     for (int u = 0; u < dim[j]; ++u) {
 
-       parameters[j][u] = 2.0 * RandDouble() - 1.0;
 
-     }
 
-   }
 
-   double original_residual;
 
-   double residual;
 
-   vector<double*> original_jacobians(arity);
 
-   vector<double*> jacobians(arity);
 
-   for (int j = 0; j < arity; ++j) {
 
-     // Since residual is one dimensional the jacobians have the same
 
-     // size as the parameter blocks.
 
-     jacobians[j] = new double[dim[j]];
 
-     original_jacobians[j] = new double[dim[j]];
 
-   }
 
-   const double kRelativeStepSize = 1e-6;
 
-   const double kRelativePrecision = 1e-4;
 
-   TestTerm<-1, -1> term(arity, dim);
 
-   scoped_ptr<CostFunction> gradient_checking_cost_function(
 
-       CreateGradientCheckingCostFunction(&term,
 
-                                          kRelativeStepSize,
 
-                                          kRelativePrecision,
 
-                                          "Ignored."));
 
-   term.Evaluate(¶meters[0],
 
-                 &original_residual,
 
-                 &original_jacobians[0]);
 
-   gradient_checking_cost_function->Evaluate(¶meters[0],
 
-                                             &residual,
 
-                                             &jacobians[0]);
 
-   EXPECT_EQ(original_residual, residual);
 
-   for (int j = 0; j < arity; j++) {
 
-     for (int k = 0; k < dim[j]; ++k) {
 
-       EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]);
 
-     }
 
-     delete[] parameters[j];
 
-     delete[] jacobians[j];
 
-     delete[] original_jacobians[j];
 
-   }
 
- }
 
- TEST(GradientCheckingCostFunction, SmokeTest) {
 
-   srand(5);
 
-   // Test with 3 blocks of size 2, 3 and 4.
 
-   int const arity = 3;
 
-   int const dim[arity] = { 2, 3, 4 };
 
-   // Make a random set of blocks.
 
-   vector<double*> parameters(arity);
 
-   for (int j = 0; j < arity; ++j) {
 
-     parameters[j] = new double[dim[j]];
 
-     for (int u = 0; u < dim[j]; ++u) {
 
-       parameters[j][u] = 2.0 * RandDouble() - 1.0;
 
-     }
 
-   }
 
-   double residual;
 
-   vector<double*> jacobians(arity);
 
-   for (int j = 0; j < arity; ++j) {
 
-     // Since residual is one dimensional the jacobians have the same size as the
 
-     // parameter blocks.
 
-     jacobians[j] = new double[dim[j]];
 
-   }
 
-   const double kRelativeStepSize = 1e-6;
 
-   const double kRelativePrecision = 1e-4;
 
-   // Should have one term that's bad, causing everything to get dumped.
 
-   LOG(INFO) << "Bad gradient";
 
-   {
 
-     TestTerm<1, 2> term(arity, dim);
 
-     scoped_ptr<CostFunction> gradient_checking_cost_function(
 
-         CreateGradientCheckingCostFunction(&term,
 
-                                            kRelativeStepSize,
 
-                                            kRelativePrecision,
 
-                                            "Fuzzy bananas"));
 
-     ScopedMockLog log;
 
-     EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
 
-     EXPECT_CALL(log, Log(WARNING, _,
 
-                          AllOf(HasSubstr("(1,0,2) Relative error worse than"),
 
-                                HasSubstr("Fuzzy bananas"))));
 
-     gradient_checking_cost_function->Evaluate(¶meters[0],
 
-                                               &residual,
 
-                                               &jacobians[0]);
 
-   }
 
-   // The gradient is correct, so no errors are reported.
 
-   LOG(INFO) << "Good gradient";
 
-   {
 
-     TestTerm<-1, -1> term(arity, dim);
 
-     scoped_ptr<CostFunction> gradient_checking_cost_function(
 
-         CreateGradientCheckingCostFunction(&term,
 
-                                            kRelativeStepSize,
 
-                                            kRelativePrecision,
 
-                                            "Ignored."));
 
-     ScopedMockLog log;
 
-     EXPECT_CALL(log, Log(_, _, _)).Times(0);
 
-     gradient_checking_cost_function->Evaluate(¶meters[0],
 
-                                               &residual,
 
-                                               &jacobians[0]);
 
-   }
 
-   for (int j = 0; j < arity; j++) {
 
-     delete[] parameters[j];
 
-     delete[] jacobians[j];
 
-   }
 
- }
 
- // The following three classes are for the purposes of defining
 
- // function signatures. They have dummy Evaluate functions.
 
- // Trivial cost function that accepts a single argument.
 
- class UnaryCostFunction : public CostFunction {
 
-  public:
 
-   UnaryCostFunction(int num_residuals, int16 parameter_block_size) {
 
-     set_num_residuals(num_residuals);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block_size);
 
-   }
 
-   virtual ~UnaryCostFunction() {}
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     for (int i = 0; i < num_residuals(); ++i) {
 
-       residuals[i] = 1;
 
-     }
 
-     return true;
 
-   }
 
- };
 
- // Trivial cost function that accepts two arguments.
 
- class BinaryCostFunction: public CostFunction {
 
-  public:
 
-   BinaryCostFunction(int num_residuals,
 
-                      int16 parameter_block1_size,
 
-                      int16 parameter_block2_size) {
 
-     set_num_residuals(num_residuals);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
 
-   }
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     for (int i = 0; i < num_residuals(); ++i) {
 
-       residuals[i] = 2;
 
-     }
 
-     return true;
 
-   }
 
- };
 
- // Trivial cost function that accepts three arguments.
 
- class TernaryCostFunction: public CostFunction {
 
-  public:
 
-   TernaryCostFunction(int num_residuals,
 
-                       int16 parameter_block1_size,
 
-                       int16 parameter_block2_size,
 
-                       int16 parameter_block3_size) {
 
-     set_num_residuals(num_residuals);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block3_size);
 
-   }
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     for (int i = 0; i < num_residuals(); ++i) {
 
-       residuals[i] = 3;
 
-     }
 
-     return true;
 
-   }
 
- };
 
- // Verify that the two ParameterBlocks are formed from the same user
 
- // array and have the same LocalParameterization object.
 
- void ParameterBlocksAreEquivalent(const ParameterBlock*  left,
 
-                                   const ParameterBlock* right) {
 
-   CHECK_NOTNULL(left);
 
-   CHECK_NOTNULL(right);
 
-   EXPECT_EQ(left->user_state(), right->user_state());
 
-   EXPECT_EQ(left->Size(), right->Size());
 
-   EXPECT_EQ(left->Size(), right->Size());
 
-   EXPECT_EQ(left->LocalSize(), right->LocalSize());
 
-   EXPECT_EQ(left->local_parameterization(), right->local_parameterization());
 
-   EXPECT_EQ(left->IsConstant(), right->IsConstant());
 
- }
 
- TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) {
 
-   // Parameter blocks with arbitrarily chosen initial values.
 
-   double x[] = {1.0, 2.0, 3.0};
 
-   double y[] = {4.0, 5.0, 6.0, 7.0};
 
-   double z[] = {8.0, 9.0, 10.0, 11.0, 12.0};
 
-   double w[] = {13.0, 14.0, 15.0, 16.0};
 
-   ProblemImpl problem_impl;
 
-   problem_impl.AddParameterBlock(x, 3);
 
-   problem_impl.AddParameterBlock(y, 4);
 
-   problem_impl.SetParameterBlockConstant(y);
 
-   problem_impl.AddParameterBlock(z, 5);
 
-   problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization);
 
-   problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x);
 
-   problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) ,
 
-                                 NULL, z, y);
 
-   problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5),
 
-                                 new TrivialLoss, x, z);
 
-   problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3),
 
-                                 NULL, z, x);
 
-   problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4),
 
-                                 NULL, z, x, y);
 
-   scoped_ptr<ProblemImpl> gradient_checking_problem_impl(
 
-       CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0));
 
-   // The dimensions of the two problems match.
 
-   EXPECT_EQ(problem_impl.NumParameterBlocks(),
 
-             gradient_checking_problem_impl->NumParameterBlocks());
 
-   EXPECT_EQ(problem_impl.NumResidualBlocks(),
 
-             gradient_checking_problem_impl->NumResidualBlocks());
 
-   EXPECT_EQ(problem_impl.NumParameters(),
 
-             gradient_checking_problem_impl->NumParameters());
 
-   EXPECT_EQ(problem_impl.NumResiduals(),
 
-             gradient_checking_problem_impl->NumResiduals());
 
-   const Program& program = problem_impl.program();
 
-   const Program& gradient_checking_program =
 
-       gradient_checking_problem_impl->program();
 
-   // Since we added the ParameterBlocks and ResidualBlocks explicitly,
 
-   // they should be in the same order in the two programs. It is
 
-   // possible that may change due to implementation changes to
 
-   // Program. This is not exepected to be the case and writing code to
 
-   // anticipate that possibility not worth the extra complexity in
 
-   // this test.
 
-   for (int i = 0; i < program.parameter_blocks().size(); ++i) {
 
-     ParameterBlocksAreEquivalent(
 
-         program.parameter_blocks()[i],
 
-         gradient_checking_program.parameter_blocks()[i]);
 
-   }
 
-   for (int i = 0; i < program.residual_blocks().size(); ++i) {
 
-     // Compare the sizes of the two ResidualBlocks.
 
-     const ResidualBlock* original_residual_block =
 
-         program.residual_blocks()[i];
 
-     const ResidualBlock* new_residual_block =
 
-         gradient_checking_program.residual_blocks()[i];
 
-     EXPECT_EQ(original_residual_block->NumParameterBlocks(),
 
-               new_residual_block->NumParameterBlocks());
 
-     EXPECT_EQ(original_residual_block->NumResiduals(),
 
-               new_residual_block->NumResiduals());
 
-     EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(),
 
-               new_residual_block->NumScratchDoublesForEvaluate());
 
-     // Verify that the ParameterBlocks for the two residuals are equivalent.
 
-     for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) {
 
-       ParameterBlocksAreEquivalent(
 
-           original_residual_block->parameter_blocks()[j],
 
-           new_residual_block->parameter_blocks()[j]);
 
-     }
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |