| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/compressed_row_sparse_matrix.h"#include <numeric>#include "ceres/casts.h"#include "ceres/crs_matrix.h"#include "ceres/cxsparse.h"#include "ceres/internal/eigen.h"#include "ceres/internal/scoped_ptr.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/random.h"#include "ceres/triplet_sparse_matrix.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {  EXPECT_EQ(a->num_rows(), b->num_rows());  EXPECT_EQ(a->num_cols(), b->num_cols());  int num_rows = a->num_rows();  int num_cols = a->num_cols();  for (int i = 0; i < num_cols; ++i) {    Vector x = Vector::Zero(num_cols);    x(i) = 1.0;    Vector y_a = Vector::Zero(num_rows);    Vector y_b = Vector::Zero(num_rows);    a->RightMultiply(x.data(), y_a.data());    b->RightMultiply(x.data(), y_b.data());    EXPECT_EQ((y_a - y_b).norm(), 0);  }}class CompressedRowSparseMatrixTest : public ::testing::Test { protected :  virtual void SetUp() {    scoped_ptr<LinearLeastSquaresProblem> problem(        CreateLinearLeastSquaresProblemFromId(1));    CHECK_NOTNULL(problem.get());    tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));    crsm.reset(new CompressedRowSparseMatrix(*tsm));    num_rows = tsm->num_rows();    num_cols = tsm->num_cols();    vector<int>* row_blocks = crsm->mutable_row_blocks();    row_blocks->resize(num_rows);    std::fill(row_blocks->begin(), row_blocks->end(), 1);    vector<int>* col_blocks = crsm->mutable_col_blocks();    col_blocks->resize(num_cols);    std::fill(col_blocks->begin(), col_blocks->end(), 1);  }  int num_rows;  int num_cols;  scoped_ptr<TripletSparseMatrix> tsm;  scoped_ptr<CompressedRowSparseMatrix> crsm;};TEST_F(CompressedRowSparseMatrixTest, RightMultiply) {  CompareMatrices(tsm.get(), crsm.get());}TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) {  for (int i = 0; i < num_rows; ++i) {    Vector a = Vector::Zero(num_rows);    a(i) = 1.0;    Vector b1 = Vector::Zero(num_cols);    Vector b2 = Vector::Zero(num_cols);    tsm->LeftMultiply(a.data(), b1.data());    crsm->LeftMultiply(a.data(), b2.data());    EXPECT_EQ((b1 - b2).norm(), 0);  }}TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) {  Vector b1 = Vector::Zero(num_cols);  Vector b2 = Vector::Zero(num_cols);  tsm->SquaredColumnNorm(b1.data());  crsm->SquaredColumnNorm(b2.data());  EXPECT_EQ((b1 - b2).norm(), 0);}TEST_F(CompressedRowSparseMatrixTest, Scale) {  Vector scale(num_cols);  for (int i = 0; i < num_cols; ++i) {    scale(i) = i + 1;  }  tsm->ScaleColumns(scale.data());  crsm->ScaleColumns(scale.data());  CompareMatrices(tsm.get(), crsm.get());}TEST_F(CompressedRowSparseMatrixTest, DeleteRows) {  // Clear the row and column blocks as these are purely scalar tests.  crsm->mutable_row_blocks()->clear();  crsm->mutable_col_blocks()->clear();  for (int i = 0; i < num_rows; ++i) {    tsm->Resize(num_rows - i, num_cols);    crsm->DeleteRows(crsm->num_rows() - tsm->num_rows());    CompareMatrices(tsm.get(), crsm.get());  }}TEST_F(CompressedRowSparseMatrixTest, AppendRows) {  // Clear the row and column blocks as these are purely scalar tests.  crsm->mutable_row_blocks()->clear();  crsm->mutable_col_blocks()->clear();  for (int i = 0; i < num_rows; ++i) {    TripletSparseMatrix tsm_appendage(*tsm);    tsm_appendage.Resize(i, num_cols);    tsm->AppendRows(tsm_appendage);    CompressedRowSparseMatrix crsm_appendage(tsm_appendage);    crsm->AppendRows(crsm_appendage);    CompareMatrices(tsm.get(), crsm.get());  }}TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {  int num_diagonal_rows = crsm->num_cols();  scoped_array<double> diagonal(new double[num_diagonal_rows]);  for (int i = 0; i < num_diagonal_rows; ++i) {    diagonal[i] =i;  }  vector<int> row_and_column_blocks;  row_and_column_blocks.push_back(1);  row_and_column_blocks.push_back(2);  row_and_column_blocks.push_back(2);  const vector<int> pre_row_blocks = crsm->row_blocks();  const vector<int> pre_col_blocks = crsm->col_blocks();  scoped_ptr<CompressedRowSparseMatrix> appendage(      CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(          diagonal.get(), row_and_column_blocks));  LOG(INFO) << appendage->row_blocks().size();  crsm->AppendRows(*appendage);  const vector<int> post_row_blocks = crsm->row_blocks();  const vector<int> post_col_blocks = crsm->col_blocks();  vector<int> expected_row_blocks = pre_row_blocks;  expected_row_blocks.insert(expected_row_blocks.end(),                             row_and_column_blocks.begin(),                             row_and_column_blocks.end());  vector<int> expected_col_blocks = pre_col_blocks;  EXPECT_EQ(expected_row_blocks, crsm->row_blocks());  EXPECT_EQ(expected_col_blocks, crsm->col_blocks());  crsm->DeleteRows(num_diagonal_rows);  EXPECT_EQ(crsm->row_blocks(), pre_row_blocks);  EXPECT_EQ(crsm->col_blocks(), pre_col_blocks);}TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) {  Matrix tsm_dense;  Matrix crsm_dense;  tsm->ToDenseMatrix(&tsm_dense);  crsm->ToDenseMatrix(&crsm_dense);  EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0);}TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) {  CRSMatrix crs_matrix;  crsm->ToCRSMatrix(&crs_matrix);  EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows);  EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols);  EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size());  EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size());  EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size());  for (int i = 0; i < crsm->num_rows() + 1; ++i) {    EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]);  }  for (int i = 0; i < crsm->num_nonzeros(); ++i) {    EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]);    EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]);  }}TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) {  vector<int> blocks;  blocks.push_back(1);  blocks.push_back(2);  blocks.push_back(2);  Vector diagonal(5);  for (int i = 0; i < 5; ++i) {    diagonal(i) = i + 1;  }  scoped_ptr<CompressedRowSparseMatrix> matrix(      CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(          diagonal.data(), blocks));  EXPECT_EQ(matrix->num_rows(), 5);  EXPECT_EQ(matrix->num_cols(), 5);  EXPECT_EQ(matrix->num_nonzeros(), 9);  EXPECT_EQ(blocks, matrix->row_blocks());  EXPECT_EQ(blocks, matrix->col_blocks());  Vector x(5);  Vector y(5);  x.setOnes();  y.setZero();  matrix->RightMultiply(x.data(), y.data());  for (int i = 0; i < diagonal.size(); ++i) {    EXPECT_EQ(y[i], diagonal[i]);  }  y.setZero();  matrix->LeftMultiply(x.data(), y.data());  for (int i = 0; i < diagonal.size(); ++i) {    EXPECT_EQ(y[i], diagonal[i]);  }  Matrix dense;  matrix->ToDenseMatrix(&dense);  EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);}class SolveLowerTriangularTest : public ::testing::Test { protected:  void SetUp() {    matrix_.reset(new CompressedRowSparseMatrix(4, 4, 7));    int* rows = matrix_->mutable_rows();    int* cols = matrix_->mutable_cols();    double* values = matrix_->mutable_values();    rows[0] = 0;    cols[0] = 0;    values[0] = 0.50754;    rows[1] = 1;    cols[1] = 1;    values[1] = 0.80483;    rows[2] = 2;    cols[2] = 1;    values[2] = 0.14120;    cols[3] = 2;    values[3] = 0.3;    rows[3] = 4;    cols[4] = 0;    values[4] = 0.77696;    cols[5] = 1;    values[5] = 0.41860;    cols[6] = 3;    values[6] = 0.88979;    rows[4] = 7;  }  scoped_ptr<CompressedRowSparseMatrix> matrix_;};TEST_F(SolveLowerTriangularTest, SolveInPlace) {  double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};  double expected[] = {1.970288,  1.242498,  6.081864, -0.057255};  matrix_->SolveLowerTriangularInPlace(rhs_and_solution);  for (int i = 0; i < 4; ++i) {    EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;  }}TEST_F(SolveLowerTriangularTest, TransposeSolveInPlace) {  double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};  const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477};  matrix_->SolveLowerTriangularTransposeInPlace(rhs_and_solution);  for (int i = 0; i < 4; ++i) {    EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;  }}TEST(CompressedRowSparseMatrix, Transpose) {  //  0  1  0  2  3  0  //  4  6  7  0  0  8  //  9 10  0 11 12  0  // 13  0 14 15  9  0  //  0 16 17  0  0  0  // Block structure:  //  A  A  A  A  B  B  //  A  A  A  A  B  B  //  A  A  A  A  B  B  //  C  C  C  C  D  D  //  C  C  C  C  D  D  //  C  C  C  C  D  D  CompressedRowSparseMatrix matrix(5, 6, 30);  int* rows = matrix.mutable_rows();  int* cols = matrix.mutable_cols();  double* values = matrix.mutable_values();  matrix.mutable_row_blocks()->push_back(3);  matrix.mutable_row_blocks()->push_back(3);  matrix.mutable_col_blocks()->push_back(4);  matrix.mutable_col_blocks()->push_back(2);  rows[0] = 0;  cols[0] = 1;  cols[1] = 3;  cols[2] = 4;  rows[1] = 3;  cols[3] = 0;  cols[4] = 1;  cols[5] = 2;  cols[6] = 5;  rows[2] = 7;  cols[7] = 0;  cols[8] = 1;  cols[9] = 3;  cols[10] = 4;  rows[3] = 11;  cols[11] = 0;  cols[12] = 2;  cols[13] = 3;  cols[14] = 4;  rows[4] = 15;  cols[15] = 1;  cols[16] = 2;  rows[5] = 17;  copy(values, values + 17, cols);  scoped_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose());  ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size());  for (int i = 0; i < transpose->row_blocks().size(); ++i) {    EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]);  }  ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size());  for (int i = 0; i < transpose->col_blocks().size(); ++i) {    EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]);  }  Matrix dense_matrix;  matrix.ToDenseMatrix(&dense_matrix);  Matrix dense_transpose;  transpose->ToDenseMatrix(&dense_transpose);  EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);}#ifndef CERES_NO_CXSPARSEstruct RandomMatrixOptions {  int num_row_blocks;  int min_row_block_size;  int max_row_block_size;  int num_col_blocks;  int min_col_block_size;  int max_col_block_size;  double block_density;};CompressedRowSparseMatrix* CreateRandomCompressedRowSparseMatrix(    const RandomMatrixOptions& options) {  vector<int> row_blocks;  for (int i = 0; i < options.num_row_blocks; ++i) {    const int delta_block_size =        Uniform(options.max_row_block_size - options.min_row_block_size);    row_blocks.push_back(options.min_row_block_size + delta_block_size);  }  vector<int> col_blocks;  for (int i = 0; i < options.num_col_blocks; ++i) {    const int delta_block_size =        Uniform(options.max_col_block_size - options.min_col_block_size);    col_blocks.push_back(options.min_col_block_size + delta_block_size);  }  vector<int> rows;  vector<int> cols;  vector<double> values;  while (values.size() == 0) {    int row_block_begin = 0;    for (int r = 0; r < options.num_row_blocks; ++r) {      int col_block_begin = 0;      for (int c = 0; c < options.num_col_blocks; ++c) {        if (RandDouble() <= options.block_density) {          for (int i = 0; i < row_blocks[r]; ++i) {            for (int j = 0; j < col_blocks[c]; ++j) {              rows.push_back(row_block_begin + i);              cols.push_back(col_block_begin + j);              values.push_back(RandNormal());            }          }        }        col_block_begin += col_blocks[c];      }      row_block_begin += row_blocks[r];    }  }  const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0);  const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0);  const int num_nonzeros = values.size();  TripletSparseMatrix tsm(num_rows, num_cols, num_nonzeros);  std::copy(rows.begin(), rows.end(), tsm.mutable_rows());  std::copy(cols.begin(), cols.end(), tsm.mutable_cols());  std::copy(values.begin(), values.end(), tsm.mutable_values());  tsm.set_num_nonzeros(num_nonzeros);  CompressedRowSparseMatrix* matrix = new CompressedRowSparseMatrix(tsm);  (*matrix->mutable_row_blocks())  = row_blocks;  (*matrix->mutable_col_blocks())  = col_blocks;  return matrix;}void ToDenseMatrix(const cs_di* matrix, Matrix* dense_matrix) {  dense_matrix->resize(matrix->m, matrix->n);  dense_matrix->setZero();  for (int c = 0; c < matrix->n; ++c) {   for (int idx = matrix->p[c]; idx < matrix->p[c + 1]; ++idx) {     const int r = matrix->i[idx];     (*dense_matrix)(r, c) = matrix->x[idx];   } }}TEST(CompressedRowSparseMatrix, ComputeOuterProduct) {  // "Randomly generated seed."  SetRandomState(29823);  int kMaxNumRowBlocks = 10;  int kMaxNumColBlocks = 10;  int kNumTrials = 10;  CXSparse cxsparse;  const double kTolerance = 1e-18;  // Create a random matrix, compute its outer product using CXSParse  // and ComputeOuterProduct. Convert both matrices to dense matrices  // and compare their upper triangular parts. They should be within  // kTolerance of each other.  for (int num_row_blocks = 1;       num_row_blocks < kMaxNumRowBlocks;       ++num_row_blocks) {    for (int num_col_blocks = 1;         num_col_blocks < kMaxNumColBlocks;         ++num_col_blocks) {      for (int trial = 0; trial < kNumTrials; ++trial) {        RandomMatrixOptions options;        options.num_row_blocks = num_row_blocks;        options.num_col_blocks = num_col_blocks;        options.min_row_block_size = 1;        options.max_row_block_size = 5;        options.min_col_block_size = 1;        options.max_col_block_size = 10;        options.block_density = std::max(0.1, RandDouble());        VLOG(2) << "num row blocks: " << options.num_row_blocks;        VLOG(2) << "num col blocks: " << options.num_col_blocks;        VLOG(2) << "min row block size: " << options.min_row_block_size;        VLOG(2) << "max row block size: " << options.max_row_block_size;        VLOG(2) << "min col block size: " << options.min_col_block_size;        VLOG(2) << "max col block size: " << options.max_col_block_size;        VLOG(2) << "block density: " << options.block_density;        scoped_ptr<CompressedRowSparseMatrix> matrix(            CreateRandomCompressedRowSparseMatrix(options));        cs_di cs_matrix_transpose = cxsparse.CreateSparseMatrixTransposeView(matrix.get());        cs_di* cs_matrix = cxsparse.TransposeMatrix(&cs_matrix_transpose);        cs_di* expected_outer_product =            cxsparse.MatrixMatrixMultiply(&cs_matrix_transpose, cs_matrix);        vector<int> program;        scoped_ptr<CompressedRowSparseMatrix> outer_product(            CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(                *matrix, &program));        CompressedRowSparseMatrix::ComputeOuterProduct(*matrix,                                                       program,                                                       outer_product.get());        cs_di actual_outer_product =            cxsparse.CreateSparseMatrixTransposeView(outer_product.get());        ASSERT_EQ(actual_outer_product.m, actual_outer_product.n);        ASSERT_EQ(expected_outer_product->m, expected_outer_product->n);        ASSERT_EQ(actual_outer_product.m, expected_outer_product->m);        Matrix actual_matrix;        Matrix expected_matrix;        ToDenseMatrix(expected_outer_product, &expected_matrix);        expected_matrix.triangularView<Eigen::StrictlyLower>().setZero();        ToDenseMatrix(&actual_outer_product, &actual_matrix);        const double diff_norm = (actual_matrix - expected_matrix).norm() / expected_matrix.norm();        ASSERT_NEAR(diff_norm, 0.0, kTolerance)            << "expected: \n"            << expected_matrix            << "\nactual: \n"            << actual_matrix;        cxsparse.Free(cs_matrix);        cxsparse.Free(expected_outer_product);      }    }  }}#endif  // CERES_NO_CXSPARSE}  // namespace internal}  // namespace ceres
 |