| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | 
							- .. highlight:: c++
 
- .. default-domain:: cpp
 
- .. _chapter-gradient_tutorial:
 
- ==================================
 
- General Unconstrained Minimization
 
- ==================================
 
- While much of Ceres Solver is devoted to solving non-linear least
 
- squares problems, internally it contains a solver that can solve
 
- general unconstrained optimization problems using just their objective
 
- function value and gradients. The ``GradientProblem`` and
 
- ``GradientProblemSolver`` objects give the user access to this solver.
 
- So without much further ado, let us look at how one goes about using
 
- them.
 
- Rosenbrock's Function
 
- =====================
 
- We consider the minimization of the famous `Rosenbrock's function
 
- <http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f1]_.
 
- We begin by defining an instance of the ``FirstOrderFunction``
 
- interface. This is the object that is responsible for computing the
 
- objective function value and the gradient (if required). This is the
 
- analog of the :class:`CostFunction` when defining non-linear least
 
- squares problems in Ceres.
 
- .. code::
 
-   class Rosenbrock : public ceres::FirstOrderFunction {
 
-    public:
 
-     virtual bool Evaluate(const double* parameters,
 
-                           double* cost,
 
-                           double* gradient) const {
 
-       const double x = parameters[0];
 
-       const double y = parameters[1];
 
-       cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
 
-       if (gradient != NULL) {
 
-         gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
 
-         gradient[1] = 200.0 * (y - x * x);
 
-       }
 
-       return true;
 
-     }
 
-     virtual int NumParameters() const { return 2; }
 
-   };
 
- Minimizing it then is a straightforward matter of constructing a
 
- :class:`GradientProblem` object and calling :func:`Solve` on it.
 
- .. code::
 
-     double parameters[2] = {-1.2, 1.0};
 
-     ceres::GradientProblem problem(new Rosenbrock());
 
-     ceres::GradientProblemSolver::Options options;
 
-     options.minimizer_progress_to_stdout = true;
 
-     ceres::GradientProblemSolver::Summary summary;
 
-     ceres::Solve(options, problem, parameters, &summary);
 
-     std::cout << summary.FullReport() << "\n";
 
- Executing this code results, solve the problem using limited memory
 
- `BFGS
 
- <http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_
 
- algorithm.
 
- .. code-block:: bash
 
-      0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e:  0 it: 2.00e-05 tt: 2.00e-05
 
-      1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e:  2 it: 7.32e-05 tt: 2.19e-04
 
-      2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e:  3 it: 2.50e-05 tt: 2.68e-04
 
-      3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 2.92e-04
 
-      4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e:  1 it: 2.86e-06 tt: 3.14e-04
 
-      5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e:  1 it: 2.86e-06 tt: 3.36e-04
 
-      6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 3.58e-04
 
-      7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e:  1 it: 4.05e-06 tt: 3.79e-04
 
-      8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e:  2 it: 9.06e-06 tt: 4.06e-04
 
-      9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 4.33e-04
 
-     10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e:  1 it: 3.81e-06 tt: 4.54e-04
 
-     11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e:  2 it: 1.00e-05 tt: 4.82e-04
 
-     12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 5.03e-04
 
-     13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e:  1 it: 2.86e-06 tt: 5.25e-04
 
-     14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 5.47e-04
 
-     15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 5.68e-04
 
-     16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e:  2 it: 9.06e-06 tt: 5.94e-04
 
-     17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 6.16e-04
 
-     18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e:  1 it: 4.05e-06 tt: 6.42e-04
 
-     19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e:  2 it: 1.00e-05 tt: 6.69e-04
 
-     20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 6.91e-04
 
-     21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e:  1 it: 3.81e-06 tt: 7.12e-04
 
-     22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e:  2 it: 9.06e-06 tt: 7.39e-04
 
-     23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 7.62e-04
 
-     24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e:  1 it: 3.81e-06 tt: 7.84e-04
 
-     25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.05e-04
 
-     26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.27e-04
 
-     27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.48e-04
 
-     28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.69e-04
 
-     29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 8.91e-04
 
-     30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 9.12e-04
 
-     31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e:  1 it: 2.86e-06 tt: 9.33e-04
 
-     32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 9.54e-04
 
-     33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 9.81e-04
 
-     34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 1.00e-03
 
-   Solver Summary (v 1.12.0-lapack-suitesparse-cxsparse-no_openmp)
 
-   Parameters                                  2
 
-   Line search direction              LBFGS (20)
 
-   Line search type                  CUBIC WOLFE
 
-   Cost:
 
-   Initial                          2.420000e+01
 
-   Final                            1.885250e-22
 
-   Change                           2.420000e+01
 
-   Minimizer iterations                       35
 
-   Time (in seconds):
 
-     Cost evaluation                       0.000
 
-     Gradient evaluation                   0.000
 
-   Total                                   0.003
 
-   Termination:                      CONVERGENCE (Gradient tolerance reached. Gradient max norm: 9.032775e-13 <= 1.000000e-10)
 
- .. rubric:: Footnotes
 
- .. [#f1] `examples/rosenbrock.cc
 
-    <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_
 
 
  |