| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//// The ProgramEvaluator runs the cost functions contained in each residual block// and stores the result into a jacobian. The particular type of jacobian is// abstracted out using two template parameters:////   - An "EvaluatePreparer" that is responsible for creating the array with//     pointers to the jacobian blocks where the cost function evaluates to.//   - A "JacobianWriter" that is responsible for storing the resulting//     jacobian blocks in the passed sparse matrix.//// This abstraction affords an efficient evaluator implementation while still// supporting writing to multiple sparse matrix formats. For example, when the// ProgramEvaluator is parameterized for writing to block sparse matrices, the// residual jacobians are written directly into their final position in the// block sparse matrix by the user's CostFunction; there is no copying.//// The evaluation is threaded with OpenMP.//// The EvaluatePreparer and JacobianWriter interfaces are as follows:////   class EvaluatePreparer {//     // Prepare the jacobians array for use as the destination of a call to//     // a cost function's evaluate method.//     void Prepare(const ResidualBlock* residual_block,//                  int residual_block_index,//                  SparseMatrix* jacobian,//                  double** jacobians);//   }////   class JacobianWriter {//     // Create a jacobian that this writer can write. Same as//     // Evaluator::CreateJacobian.//     SparseMatrix* CreateJacobian() const;////     // Create num_threads evaluate preparers. Caller owns result which must//     // be freed with delete[]. Resulting preparers are valid while *this is.//     EvaluatePreparer* CreateEvaluatePreparers(int num_threads);////     // Write the block jacobians from a residual block evaluation to the//     // larger sparse jacobian.//     void Write(int residual_id,//                int residual_offset,//                double** jacobians,//                SparseMatrix* jacobian);//   }//// Note: The ProgramEvaluator is not thread safe, since internally it maintains// some per-thread scratch space.#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_#ifdef CERES_USE_OPENMP#include <omp.h>#endif#include <map>#include <string>#include <vector>#include "ceres/execution_summary.h"#include "ceres/internal/eigen.h"#include "ceres/internal/scoped_ptr.h"#include "ceres/parameter_block.h"#include "ceres/program.h"#include "ceres/residual_block.h"#include "ceres/small_blas.h"namespace ceres {namespace internal {template<typename EvaluatePreparer, typename JacobianWriter>class ProgramEvaluator : public Evaluator { public:  ProgramEvaluator(const Evaluator::Options &options, Program* program)      : options_(options),        program_(program),        jacobian_writer_(options, program),        evaluate_preparers_(            jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {#ifndef CERES_USE_OPENMP    CHECK_EQ(1, options_.num_threads)        << "OpenMP support is not compiled into this binary; "        << "only options.num_threads=1 is supported.";#endif    BuildResidualLayout(*program, &residual_layout_);    evaluate_scratch_.reset(CreateEvaluatorScratch(*program,                                                   options.num_threads));  }  // Implementation of Evaluator interface.  SparseMatrix* CreateJacobian() const {    return jacobian_writer_.CreateJacobian();  }  bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,                const double* state,                double* cost,                double* residuals,                double* gradient,                SparseMatrix* jacobian) {    ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);    ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL                                         ? "Evaluator::Residual"                                         : "Evaluator::Jacobian",                                         &execution_summary_);    // The parameters are stateful, so set the state before evaluating.    if (!program_->StateVectorToParameterBlocks(state)) {      return false;    }    if (residuals != NULL) {      VectorRef(residuals, program_->NumResiduals()).setZero();    }    if (jacobian != NULL) {      jacobian->SetZero();    }    // Each thread gets it's own cost and evaluate scratch space.    for (int i = 0; i < options_.num_threads; ++i) {      evaluate_scratch_[i].cost = 0.0;      if (gradient != NULL) {        VectorRef(evaluate_scratch_[i].gradient.get(),                  program_->NumEffectiveParameters()).setZero();      }    }    // This bool is used to disable the loop if an error is encountered    // without breaking out of it. The remaining loop iterations are still run,    // but with an empty body, and so will finish quickly.    bool abort = false;    int num_residual_blocks = program_->NumResidualBlocks();#pragma omp parallel for num_threads(options_.num_threads)    for (int i = 0; i < num_residual_blocks; ++i) {// Disable the loop instead of breaking, as required by OpenMP.#pragma omp flush(abort)      if (abort) {        continue;      }#ifdef CERES_USE_OPENMP      int thread_id = omp_get_thread_num();#else      int thread_id = 0;#endif      EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];      EvaluateScratch* scratch = &evaluate_scratch_[thread_id];      // Prepare block residuals if requested.      const ResidualBlock* residual_block = program_->residual_blocks()[i];      double* block_residuals = NULL;      if (residuals != NULL) {        block_residuals = residuals + residual_layout_[i];      } else if (gradient != NULL) {        block_residuals = scratch->residual_block_residuals.get();      }      // Prepare block jacobians if requested.      double** block_jacobians = NULL;      if (jacobian != NULL || gradient != NULL) {        preparer->Prepare(residual_block,                          i,                          jacobian,                          scratch->jacobian_block_ptrs.get());        block_jacobians = scratch->jacobian_block_ptrs.get();      }      // Evaluate the cost, residuals, and jacobians.      double block_cost;      if (!residual_block->Evaluate(              evaluate_options.apply_loss_function,              &block_cost,              block_residuals,              block_jacobians,              scratch->residual_block_evaluate_scratch.get())) {        abort = true;// This ensures that the OpenMP threads have a consistent view of 'abort'. Do// the flush inside the failure case so that there is usually only one// synchronization point per loop iteration instead of two.#pragma omp flush(abort)        continue;      }      scratch->cost += block_cost;      // Store the jacobians, if they were requested.      if (jacobian != NULL) {        jacobian_writer_.Write(i,                               residual_layout_[i],                               block_jacobians,                               jacobian);      }      // Compute and store the gradient, if it was requested.      if (gradient != NULL) {        int num_residuals = residual_block->NumResiduals();        int num_parameter_blocks = residual_block->NumParameterBlocks();        for (int j = 0; j < num_parameter_blocks; ++j) {          const ParameterBlock* parameter_block =              residual_block->parameter_blocks()[j];          if (parameter_block->IsConstant()) {            continue;          }          MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(              block_jacobians[j],              num_residuals,              parameter_block->LocalSize(),              block_residuals,              scratch->gradient.get() + parameter_block->delta_offset());        }      }    }    if (!abort) {      // Sum the cost and gradient (if requested) from each thread.      (*cost) = 0.0;      int num_parameters = program_->NumEffectiveParameters();      if (gradient != NULL) {        VectorRef(gradient, num_parameters).setZero();      }      for (int i = 0; i < options_.num_threads; ++i) {        (*cost) += evaluate_scratch_[i].cost;        if (gradient != NULL) {          VectorRef(gradient, num_parameters) +=              VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);        }      }    }    return !abort;  }  bool Plus(const double* state,            const double* delta,            double* state_plus_delta) const {    return program_->Plus(state, delta, state_plus_delta);  }  int NumParameters() const {    return program_->NumParameters();  }  int NumEffectiveParameters() const {    return program_->NumEffectiveParameters();  }  int NumResiduals() const {    return program_->NumResiduals();  }  virtual map<string, int> CallStatistics() const {    return execution_summary_.calls();  }  virtual map<string, double> TimeStatistics() const {    return execution_summary_.times();  } private:  // Per-thread scratch space needed to evaluate and store each residual block.  struct EvaluateScratch {    void Init(int max_parameters_per_residual_block,              int max_scratch_doubles_needed_for_evaluate,              int max_residuals_per_residual_block,              int num_parameters) {      residual_block_evaluate_scratch.reset(          new double[max_scratch_doubles_needed_for_evaluate]);      gradient.reset(new double[num_parameters]);      VectorRef(gradient.get(), num_parameters).setZero();      residual_block_residuals.reset(          new double[max_residuals_per_residual_block]);      jacobian_block_ptrs.reset(          new double*[max_parameters_per_residual_block]);    }    double cost;    scoped_array<double> residual_block_evaluate_scratch;    // The gradient in the local parameterization.    scoped_array<double> gradient;    // Enough space to store the residual for the largest residual block.    scoped_array<double> residual_block_residuals;    scoped_array<double*> jacobian_block_ptrs;  };  static void BuildResidualLayout(const Program& program,                                  vector<int>* residual_layout) {    const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();    residual_layout->resize(program.NumResidualBlocks());    int residual_pos = 0;    for (int i = 0; i < residual_blocks.size(); ++i) {      const int num_residuals = residual_blocks[i]->NumResiduals();      (*residual_layout)[i] = residual_pos;      residual_pos += num_residuals;    }  }  // Create scratch space for each thread evaluating the program.  static EvaluateScratch* CreateEvaluatorScratch(const Program& program,                                                 int num_threads) {    int max_parameters_per_residual_block =        program.MaxParametersPerResidualBlock();    int max_scratch_doubles_needed_for_evaluate =        program.MaxScratchDoublesNeededForEvaluate();    int max_residuals_per_residual_block =        program.MaxResidualsPerResidualBlock();    int num_parameters = program.NumEffectiveParameters();    EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];    for (int i = 0; i < num_threads; i++) {      evaluate_scratch[i].Init(max_parameters_per_residual_block,                               max_scratch_doubles_needed_for_evaluate,                               max_residuals_per_residual_block,                               num_parameters);    }    return evaluate_scratch;  }  Evaluator::Options options_;  Program* program_;  JacobianWriter jacobian_writer_;  scoped_array<EvaluatePreparer> evaluate_preparers_;  scoped_array<EvaluateScratch> evaluate_scratch_;  vector<int> residual_layout_;  ::ceres::internal::ExecutionSummary execution_summary_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_
 |