| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include <algorithm>
 
- #include <numeric>
 
- #include <vector>
 
- #include "ceres/crs_matrix.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- namespace {
 
- // Helper functor used by the constructor for reordering the contents
 
- // of a TripletSparseMatrix. This comparator assumes thay there are no
 
- // duplicates in the pair of arrays rows and cols, i.e., there is no
 
- // indices i and j (not equal to each other) s.t.
 
- //
 
- //  rows[i] == rows[j] && cols[i] == cols[j]
 
- //
 
- // If this is the case, this functor will not be a StrictWeakOrdering.
 
- struct RowColLessThan {
 
-   RowColLessThan(const int* rows, const int* cols)
 
-       : rows(rows), cols(cols) {
 
-   }
 
-   bool operator()(const int x, const int y) const {
 
-     if (rows[x] == rows[y]) {
 
-       return (cols[x] < cols[y]);
 
-     }
 
-     return (rows[x] < rows[y]);
 
-   }
 
-   const int* rows;
 
-   const int* cols;
 
- };
 
- }  // namespace
 
- // This constructor gives you a semi-initialized CompressedRowSparseMatrix.
 
- CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows,
 
-                                                      int num_cols,
 
-                                                      int max_num_nonzeros) {
 
-   num_rows_ = num_rows;
 
-   num_cols_ = num_cols;
 
-   rows_.resize(num_rows + 1, 0);
 
-   cols_.resize(max_num_nonzeros, 0);
 
-   values_.resize(max_num_nonzeros, 0.0);
 
-   VLOG(1) << "# of rows: " << num_rows_
 
-           << " # of columns: " << num_cols_
 
-           << " max_num_nonzeros: " << cols_.size()
 
-           << ". Allocating " << (num_rows_ + 1) * sizeof(int) +  // NOLINT
 
-       cols_.size() * sizeof(int) +  // NOLINT
 
-       cols_.size() * sizeof(double);  // NOLINT
 
- }
 
- CompressedRowSparseMatrix::CompressedRowSparseMatrix(
 
-     const TripletSparseMatrix& m) {
 
-   num_rows_ = m.num_rows();
 
-   num_cols_ = m.num_cols();
 
-   rows_.resize(num_rows_ + 1, 0);
 
-   cols_.resize(m.num_nonzeros(), 0);
 
-   values_.resize(m.max_num_nonzeros(), 0.0);
 
-   // index is the list of indices into the TripletSparseMatrix m.
 
-   vector<int> index(m.num_nonzeros(), 0);
 
-   for (int i = 0; i < m.num_nonzeros(); ++i) {
 
-     index[i] = i;
 
-   }
 
-   // Sort index such that the entries of m are ordered by row and ties
 
-   // are broken by column.
 
-   sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols()));
 
-   VLOG(1) << "# of rows: " << num_rows_
 
-           << " # of columns: " << num_cols_
 
-           << " max_num_nonzeros: " << cols_.size()
 
-           << ". Allocating "
 
-           << ((num_rows_ + 1) * sizeof(int) +  // NOLINT
 
-               cols_.size() * sizeof(int) +     // NOLINT
 
-               cols_.size() * sizeof(double));  // NOLINT
 
-   // Copy the contents of the cols and values array in the order given
 
-   // by index and count the number of entries in each row.
 
-   for (int i = 0; i < m.num_nonzeros(); ++i) {
 
-     const int idx = index[i];
 
-     ++rows_[m.rows()[idx] + 1];
 
-     cols_[i] = m.cols()[idx];
 
-     values_[i] = m.values()[idx];
 
-   }
 
-   // Find the cumulative sum of the row counts.
 
-   for (int i = 1; i < num_rows_ + 1; ++i) {
 
-     rows_[i] += rows_[i - 1];
 
-   }
 
-   CHECK_EQ(num_nonzeros(), m.num_nonzeros());
 
- }
 
- CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal,
 
-                                                      int num_rows) {
 
-   CHECK_NOTNULL(diagonal);
 
-   num_rows_ = num_rows;
 
-   num_cols_ = num_rows;
 
-   rows_.resize(num_rows + 1);
 
-   cols_.resize(num_rows);
 
-   values_.resize(num_rows);
 
-   rows_[0] = 0;
 
-   for (int i = 0; i < num_rows_; ++i) {
 
-     cols_[i] = i;
 
-     values_[i] = diagonal[i];
 
-     rows_[i + 1] = i + 1;
 
-   }
 
-   CHECK_EQ(num_nonzeros(), num_rows);
 
- }
 
- CompressedRowSparseMatrix::~CompressedRowSparseMatrix() {
 
- }
 
- void CompressedRowSparseMatrix::SetZero() {
 
-   fill(values_.begin(), values_.end(), 0);
 
- }
 
- void CompressedRowSparseMatrix::RightMultiply(const double* x,
 
-                                               double* y) const {
 
-   CHECK_NOTNULL(x);
 
-   CHECK_NOTNULL(y);
 
-   for (int r = 0; r < num_rows_; ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
 
-       y[r] += values_[idx] * x[cols_[idx]];
 
-     }
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const {
 
-   CHECK_NOTNULL(x);
 
-   CHECK_NOTNULL(y);
 
-   for (int r = 0; r < num_rows_; ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
 
-       y[cols_[idx]] += values_[idx] * x[r];
 
-     }
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const {
 
-   CHECK_NOTNULL(x);
 
-   fill(x, x + num_cols_, 0.0);
 
-   for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
 
-     x[cols_[idx]] += values_[idx] * values_[idx];
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::ScaleColumns(const double* scale) {
 
-   CHECK_NOTNULL(scale);
 
-   for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
 
-     values_[idx] *= scale[cols_[idx]];
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
 
-   CHECK_NOTNULL(dense_matrix);
 
-   dense_matrix->resize(num_rows_, num_cols_);
 
-   dense_matrix->setZero();
 
-   for (int r = 0; r < num_rows_; ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
 
-       (*dense_matrix)(r, cols_[idx]) = values_[idx];
 
-     }
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::DeleteRows(int delta_rows) {
 
-   CHECK_GE(delta_rows, 0);
 
-   CHECK_LE(delta_rows, num_rows_);
 
-   num_rows_ -= delta_rows;
 
-   rows_.resize(num_rows_ + 1);
 
-   // Walk the list of row blocks until we reach the new number of rows
 
-   // and the drop the rest of the row blocks.
 
-   int num_row_blocks = 0;
 
-   int num_rows = 0;
 
-   while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) {
 
-     num_rows += row_blocks_[num_row_blocks];
 
-     ++num_row_blocks;
 
-   }
 
-   row_blocks_.resize(num_row_blocks);
 
- }
 
- void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) {
 
-   CHECK_EQ(m.num_cols(), num_cols_);
 
-   CHECK(row_blocks_.size() == 0 || m.row_blocks().size() !=0)
 
-       << "Cannot append a matrix with row blocks to one without and vice versa."
 
-       << "This matrix has : " << row_blocks_.size() << " row blocks."
 
-       << "The matrix being appended has: " << m.row_blocks().size()
 
-       << " row blocks.";
 
-   if (cols_.size() < num_nonzeros() + m.num_nonzeros()) {
 
-     cols_.resize(num_nonzeros() + m.num_nonzeros());
 
-     values_.resize(num_nonzeros() + m.num_nonzeros());
 
-   }
 
-   // Copy the contents of m into this matrix.
 
-   copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]);
 
-   copy(m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]);
 
-   rows_.resize(num_rows_ + m.num_rows() + 1);
 
-   // new_rows = [rows_, m.row() + rows_[num_rows_]]
 
-   fill(rows_.begin() + num_rows_,
 
-        rows_.begin() + num_rows_ + m.num_rows() + 1,
 
-        rows_[num_rows_]);
 
-   for (int r = 0; r < m.num_rows() + 1; ++r) {
 
-     rows_[num_rows_ + r] += m.rows()[r];
 
-   }
 
-   num_rows_ += m.num_rows();
 
-   row_blocks_.insert(row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end());
 
- }
 
- void CompressedRowSparseMatrix::ToTextFile(FILE* file) const {
 
-   CHECK_NOTNULL(file);
 
-   for (int r = 0; r < num_rows_; ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
 
-       fprintf(file,
 
-               "% 10d % 10d %17f\n",
 
-               r,
 
-               cols_[idx],
 
-               values_[idx]);
 
-     }
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const {
 
-   matrix->num_rows = num_rows_;
 
-   matrix->num_cols = num_cols_;
 
-   matrix->rows = rows_;
 
-   matrix->cols = cols_;
 
-   matrix->values = values_;
 
-   // Trim.
 
-   matrix->rows.resize(matrix->num_rows + 1);
 
-   matrix->cols.resize(matrix->rows[matrix->num_rows]);
 
-   matrix->values.resize(matrix->rows[matrix->num_rows]);
 
- }
 
- void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) {
 
-   CHECK_GE(num_nonzeros, 0);
 
-   cols_.resize(num_nonzeros);
 
-   values_.resize(num_nonzeros);
 
- }
 
- void CompressedRowSparseMatrix::SolveLowerTriangularInPlace(
 
-     double* solution) const {
 
-   for (int r = 0; r < num_rows_; ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1] - 1; ++idx) {
 
-       solution[r] -= values_[idx] * solution[cols_[idx]];
 
-     }
 
-     solution[r] /=  values_[rows_[r + 1] - 1];
 
-   }
 
- }
 
- void CompressedRowSparseMatrix::SolveLowerTriangularTransposeInPlace(
 
-     double* solution) const {
 
-   for (int r = num_rows_ - 1; r >= 0; --r) {
 
-     solution[r] /= values_[rows_[r + 1] - 1];
 
-     for (int idx = rows_[r + 1] - 2; idx >= rows_[r]; --idx) {
 
-       solution[cols_[idx]] -= values_[idx] * solution[r];
 
-     }
 
-   }
 
- }
 
- CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
 
-     const double* diagonal,
 
-     const vector<int>& blocks) {
 
-   int num_rows = 0;
 
-   int num_nonzeros = 0;
 
-   for (int i = 0; i < blocks.size(); ++i) {
 
-     num_rows += blocks[i];
 
-     num_nonzeros += blocks[i] * blocks[i];
 
-   }
 
-   CompressedRowSparseMatrix* matrix =
 
-       new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros);
 
-   int* rows = matrix->mutable_rows();
 
-   int* cols = matrix->mutable_cols();
 
-   double* values = matrix->mutable_values();
 
-   fill(values, values + num_nonzeros, 0.0);
 
-   int idx_cursor = 0;
 
-   int col_cursor = 0;
 
-   for (int i = 0; i < blocks.size(); ++i) {
 
-     const int block_size = blocks[i];
 
-     for (int r = 0; r < block_size; ++r) {
 
-       *(rows++) = idx_cursor;
 
-       values[idx_cursor + r] = diagonal[col_cursor + r];
 
-       for (int c = 0; c < block_size; ++c, ++idx_cursor) {
 
-         *(cols++) = col_cursor + c;
 
-       }
 
-     }
 
-     col_cursor += block_size;
 
-   }
 
-   *rows = idx_cursor;
 
-   *matrix->mutable_row_blocks() = blocks;
 
-   *matrix->mutable_col_blocks() = blocks;
 
-   CHECK_EQ(idx_cursor, num_nonzeros);
 
-   CHECK_EQ(col_cursor, num_rows);
 
-   return matrix;
 
- }
 
- CompressedRowSparseMatrix* CompressedRowSparseMatrix::Transpose() const {
 
-   CompressedRowSparseMatrix* transpose =
 
-       new CompressedRowSparseMatrix(num_cols_, num_rows_, num_nonzeros());
 
-   int* transpose_rows = transpose->mutable_rows();
 
-   int* transpose_cols = transpose->mutable_cols();
 
-   double* transpose_values = transpose->mutable_values();
 
-   for (int idx = 0; idx < num_nonzeros(); ++idx) {
 
-     ++transpose_rows[cols_[idx] + 1];
 
-   }
 
-   for (int i = 1; i < transpose->num_rows() + 1; ++i) {
 
-     transpose_rows[i] += transpose_rows[i - 1];
 
-   }
 
-   for (int r = 0; r < num_rows(); ++r) {
 
-     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
 
-       const int c = cols_[idx];
 
-       const int transpose_idx = transpose_rows[c]++;
 
-       transpose_cols[transpose_idx] = r;
 
-       transpose_values[transpose_idx] = values_[idx];
 
-     }
 
-   }
 
-   for (int i = transpose->num_rows() - 1; i > 0 ; --i) {
 
-     transpose_rows[i] = transpose_rows[i - 1];
 
-   }
 
-   transpose_rows[0] = 0;
 
-   *(transpose->mutable_row_blocks()) = col_blocks_;
 
-   *(transpose->mutable_col_blocks()) = row_blocks_;
 
-   return transpose;
 
- }
 
- namespace {
 
- // A ProductTerm is a term in the outer product of a matrix with
 
- // itself.
 
- struct ProductTerm {
 
-   ProductTerm(const int row, const int col, const int index)
 
-       : row(row), col(col), index(index) {
 
-   }
 
-   bool operator<(const ProductTerm& right) const {
 
-     if (row == right.row) {
 
-       if (col == right.col) {
 
-         return index < right.index;
 
-       }
 
-       return col < right.col;
 
-     }
 
-     return row < right.row;
 
-   }
 
-   int row;
 
-   int col;
 
-   int index;
 
- };
 
- CompressedRowSparseMatrix*
 
- CompressAndFillProgram(const int num_rows,
 
-                        const int num_cols,
 
-                        const vector<ProductTerm>& product,
 
-                        vector<int>* program) {
 
-   CHECK_GT(product.size(), 0);
 
-   // Count the number of unique product term, which in turn is the
 
-   // number of non-zeros in the outer product.
 
-   int num_nonzeros = 1;
 
-   for (int i = 1; i < product.size(); ++i) {
 
-     if (product[i].row != product[i - 1].row ||
 
-         product[i].col != product[i - 1].col) {
 
-       ++num_nonzeros;
 
-     }
 
-   }
 
-   CompressedRowSparseMatrix* matrix =
 
-       new CompressedRowSparseMatrix(num_rows, num_cols, num_nonzeros);
 
-   int* crsm_rows = matrix->mutable_rows();
 
-   std::fill(crsm_rows, crsm_rows + num_rows + 1, 0);
 
-   int* crsm_cols = matrix->mutable_cols();
 
-   std::fill(crsm_cols, crsm_cols + num_nonzeros, 0);
 
-   CHECK_NOTNULL(program)->clear();
 
-   program->resize(product.size());
 
-   // Iterate over the sorted product terms. This means each row is
 
-   // filled one at a time, and we are able to assign a position in the
 
-   // values array to each term.
 
-   //
 
-   // If terms repeat, i.e., they contribute to the same entry in the
 
-   // result matrix), then they do not affect the sparsity structure of
 
-   // the result matrix.
 
-   int nnz = 0;
 
-   crsm_cols[0] = product[0].col;
 
-   crsm_rows[product[0].row + 1]++;
 
-   (*program)[product[0].index] = nnz;
 
-   for (int i = 1; i < product.size(); ++i) {
 
-     const ProductTerm& previous = product[i - 1];
 
-     const ProductTerm& current = product[i];
 
-     // Sparsity structure is updated only if the term is not a repeat.
 
-     if (previous.row != current.row || previous.col != current.col) {
 
-       crsm_cols[++nnz] = current.col;
 
-       crsm_rows[current.row + 1]++;
 
-     }
 
-     // All terms get assigned the position in the values array where
 
-     // their value is accumulated.
 
-     (*program)[current.index] = nnz;
 
-   }
 
-   for (int i = 1; i < num_rows + 1; ++i) {
 
-     crsm_rows[i] += crsm_rows[i - 1];
 
-   }
 
-   return matrix;
 
- }
 
- }  // namespace
 
- CompressedRowSparseMatrix*
 
- CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
 
-       const CompressedRowSparseMatrix& m,
 
-       vector<int>* program) {
 
-   CHECK_NOTNULL(program)->clear();
 
-   CHECK_GT(m.num_nonzeros(), 0) << "Congratulations, "
 
-                                 << "you found a bug in Ceres. Please report it.";
 
-   vector<ProductTerm> product;
 
-   const vector<int>& row_blocks = m.row_blocks();
 
-   int row_block_begin = 0;
 
-   // Iterate over row blocks
 
-   for (int row_block = 0; row_block < row_blocks.size(); ++row_block) {
 
-     const int row_block_end = row_block_begin + row_blocks[row_block];
 
-     // Compute the outer product terms for just one row per row block.
 
-     const int r = row_block_begin;
 
-     // Compute the lower triangular part of the product.
 
-     for (int idx1 = m.rows()[r]; idx1 < m.rows()[r + 1]; ++idx1) {
 
-       for (int idx2 = m.rows()[r]; idx2 <= idx1; ++idx2) {
 
-         product.push_back(ProductTerm(m.cols()[idx1], m.cols()[idx2], product.size()));
 
-       }
 
-     }
 
-     row_block_begin = row_block_end;
 
-   }
 
-   CHECK_EQ(row_block_begin, m.num_rows());
 
-   sort(product.begin(), product.end());
 
-   return CompressAndFillProgram(m.num_cols(), m.num_cols(), product, program);
 
- }
 
- void CompressedRowSparseMatrix::ComputeOuterProduct(
 
-     const CompressedRowSparseMatrix& m,
 
-     const vector<int>& program,
 
-     CompressedRowSparseMatrix* result) {
 
-   result->SetZero();
 
-   double* values = result->mutable_values();
 
-   const vector<int>& row_blocks = m.row_blocks();
 
-   int cursor = 0;
 
-   int row_block_begin = 0;
 
-   const double* m_values = m.values();
 
-   const int* m_rows = m.rows();
 
-   // Iterate over row blocks.
 
-   for (int row_block = 0; row_block < row_blocks.size(); ++row_block) {
 
-     const int row_block_end = row_block_begin + row_blocks[row_block];
 
-     const int saved_cursor = cursor;
 
-     for (int r = row_block_begin; r < row_block_end; ++r) {
 
-       // Reuse the program segment for each row in this row block.
 
-       cursor = saved_cursor;
 
-       const int row_begin = m_rows[r];
 
-       const int row_end = m_rows[r + 1];
 
-       for (int idx1 = row_begin; idx1 < row_end; ++idx1) {
 
-         const double v1 =  m_values[idx1];
 
-         for (int idx2 = row_begin; idx2 <= idx1; ++idx2, ++cursor) {
 
-           values[program[cursor]] += v1 * m_values[idx2];
 
-         }
 
-       }
 
-     }
 
-     row_block_begin = row_block_end;
 
-   }
 
-   CHECK_EQ(row_block_begin, m.num_rows());
 
-   CHECK_EQ(cursor, program.size());
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |