| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)#include "ceres/numeric_diff_cost_function.h"#include <algorithm>#include <cmath>#include <string>#include <vector>#include "ceres/internal/macros.h"#include "ceres/internal/scoped_ptr.h"#include "ceres/sized_cost_function.h"#include "ceres/stringprintf.h"#include "ceres/test_util.h"#include "ceres/types.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// y1 = x1'x2      -> dy1/dx1 = x2,               dy1/dx2 = x1// y2 = (x1'x2)^2  -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2)// y3 = x2'x2      -> dy3/dx1 = 0,                dy3/dx2 = 2 * x2struct EasyFunctor {  bool operator()(const double* x1, const double* x2, double* residuals) const {    residuals[0] = residuals[1] = residuals[2] = 0;    for (int i = 0; i < 5; ++i) {      residuals[0] += x1[i] * x2[i];      residuals[2] += x2[i] * x2[i];    }    residuals[1] = residuals[0] * residuals[0];    return true;  }};class EasyCostFunction : public SizedCostFunction<3, 5, 5> { public:  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    (void) jacobians;  // Ignored.    return EasyFunctor()(parameters[0], parameters[1], residuals);  }};TEST(NumericDiffCostFunction, EasyCase) {  // Try both central and forward difference.  internal::scoped_ptr<CostFunction> cfs[4];  cfs[0].reset(      new NumericDiffCostFunction<EasyCostFunction,                                  CENTRAL,                                  3,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(          new EasyCostFunction, TAKE_OWNERSHIP));  cfs[1].reset(      new NumericDiffCostFunction<EasyCostFunction,                                  FORWARD,                                  3,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(          new EasyCostFunction, TAKE_OWNERSHIP));    cfs[2].reset(        new NumericDiffCostFunction< EasyFunctor,                                     CENTRAL,                                     3,  /* number of residuals */                                     5,  /* size of x1 */                                     5   /* size of x2 */>(                                         new EasyFunctor));    cfs[3].reset(        new NumericDiffCostFunction< EasyFunctor,                                     FORWARD,                                     3,  /* number of residuals */                                     5,  /* size of x1 */                                     5   /* size of x2 */>(                                         new EasyFunctor));  for (int c = 0; c < 4; ++c) {    CostFunction *cost_function = cfs[c].get();    double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };    double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };    double *parameters[] = { &x1[0], &x2[0] };    double dydx1[15];  // 3 x 5, row major.    double dydx2[15];  // 3 x 5, row major.    double *jacobians[2] = { &dydx1[0], &dydx2[0] };    double residuals[3] = {-1e-100, -2e-100, -3e-100 };    ASSERT_TRUE(cost_function->Evaluate(¶meters[0],                                        &residuals[0],                                        &jacobians[0]));    EXPECT_EQ(residuals[0], 67);    EXPECT_EQ(residuals[1], 4489);    EXPECT_EQ(residuals[2], 213);    for (int i = 0; i < 5; ++i) {      LOG(INFO) << "c = " << c << " i = " << i;      const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5;      ExpectClose(x2[i],                    dydx1[5 * 0 + i], kEps);  // y1      ExpectClose(x1[i],                    dydx2[5 * 0 + i], kEps);      ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps);  // y2      ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps);      ExpectClose(0.0,                      dydx1[5 * 2 + i], kEps);  // y3      ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], kEps);    }  }}// y1 = sin(x1'x2)// y2 = exp(-x1'x2 / 10)//// dy1/dx1 =  x2 * cos(x1'x2),            dy1/dx2 =  x1 * cos(x1'x2)// dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10struct TranscendentalFunctor {  bool operator()(const double* x1, const double* x2, double* residuals) const {    double x1x2 = 0;    for (int i = 0; i < 5; ++i) {      x1x2 += x1[i] * x2[i];    }    residuals[0] = sin(x1x2);    residuals[1] = exp(-x1x2 / 10);    return true;  }};class TranscendentalTestCostFunction : public SizedCostFunction<2, 5, 5> { public:  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    (void) jacobians;  // Ignored.    return TranscendentalFunctor()(parameters[0], parameters[1], residuals);  }};TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) {  // Try both central and forward difference.  internal::scoped_ptr<CostFunction> cfs[4];  cfs[0].reset(      new NumericDiffCostFunction<TranscendentalTestCostFunction,                                  CENTRAL,                                  2,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(          new TranscendentalTestCostFunction, TAKE_OWNERSHIP));  cfs[1].reset(      new NumericDiffCostFunction<TranscendentalTestCostFunction,                                  FORWARD,                                  2,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(          new TranscendentalTestCostFunction, TAKE_OWNERSHIP));  cfs[2].reset(      new NumericDiffCostFunction<TranscendentalFunctor,                                  CENTRAL,                                  2,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(                                      new TranscendentalFunctor));  cfs[3].reset(      new NumericDiffCostFunction<TranscendentalFunctor,                                  FORWARD,                                  2,  /* number of residuals */                                  5,  /* size of x1 */                                  5   /* size of x2 */>(                                      new TranscendentalFunctor));  for (int c = 0; c < 4; ++c) {    CostFunction *cost_function = cfs[c].get();    struct {      double x1[5];      double x2[5];    } kTests[] = {      { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros.        { 9.0, 9.0, 5.0, 5.0, 1.0 },      },      { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1.        { 9.0, 9.0, 5.0, 5.0, 1.0 },      },      { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2.        { 0.0, 9.0, 0.0, 5.0, 0.0 },      },      { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1.        { 9.0, 9.0, 5.0, 5.0, 1.0 },      },      { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2.        { 0.0, 0.0, 0.0, 0.0, 0.0 },      },      { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros.        { 0.0, 0.0, 0.0, 0.0, 0.0 },      },    };    for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) {      double *x1 = &(kTests[k].x1[0]);      double *x2 = &(kTests[k].x2[0]);      double *parameters[] = { x1, x2 };      double dydx1[10];      double dydx2[10];      double *jacobians[2] = { &dydx1[0], &dydx2[0] };      double residuals[2];      ASSERT_TRUE(cost_function->Evaluate(¶meters[0],                                          &residuals[0],                                          &jacobians[0]));      LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c;      double x1x2 = 0;      for (int i = 0; i < 5; ++i) {        x1x2 += x1[i] * x2[i];      }      for (int i = 0; i < 5; ++i) {        const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5;        ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], kEps);        ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], kEps);        ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps);        ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps);      }    }  }}template<int num_rows, int num_cols>class SizeTestingCostFunction : public SizedCostFunction<num_rows, num_cols> { public:  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    return true;  }};// As described in// http://forum.kde.org/viewtopic.php?f=74&t=98536#p210774// Eigen3 has restrictions on the Row/Column major storage of vectors,// depending on their dimensions. This test ensures that the correct// templates are instantiated for various shapes of the Jacobian// matrix.TEST(NumericDiffCostFunction, EigenRowMajorColMajorTest) {  scoped_ptr<CostFunction> cost_function;  cost_function.reset(      new NumericDiffCostFunction<SizeTestingCostFunction<1,1>,  CENTRAL, 1, 1>(          new SizeTestingCostFunction<1,1>, ceres::TAKE_OWNERSHIP));  cost_function.reset(      new NumericDiffCostFunction<SizeTestingCostFunction<2,1>,  CENTRAL, 2, 1>(          new SizeTestingCostFunction<2,1>, ceres::TAKE_OWNERSHIP));  cost_function.reset(      new NumericDiffCostFunction<SizeTestingCostFunction<1,2>,  CENTRAL, 1, 2>(          new SizeTestingCostFunction<1,2>, ceres::TAKE_OWNERSHIP));  cost_function.reset(      new NumericDiffCostFunction<SizeTestingCostFunction<2,2>,  CENTRAL, 2, 2>(          new SizeTestingCostFunction<2,2>, ceres::TAKE_OWNERSHIP));}}  // namespace internal}  // namespace ceres
 |