| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2013 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //         mierle@gmail.com (Keir Mierle)
 
- //
 
- // Finite differencing routine used by NumericDiffCostFunction.
 
- #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
 
- #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
 
- #include <cstring>
 
- #include <glog/logging.h>
 
- #include "Eigen/Dense"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/internal/variadic_evaluate.h"
 
- #include "ceres/types.h"
 
- #include "ceres/cost_function.h"
 
- namespace ceres {
 
- namespace internal {
 
- // Helper templates that allow evaluation of a variadic functor or a
 
- // CostFunction object.
 
- template <typename CostFunctor,
 
-           int N0, int N1, int N2, int N3, int N4,
 
-           int N5, int N6, int N7, int N8, int N9 >
 
- bool EvaluateImpl(const CostFunctor* functor,
 
-                   double const* const* parameters,
 
-                   double* residuals,
 
-                   const void* /* NOT USED */) {
 
-   return VariadicEvaluate<CostFunctor,
 
-                           double,
 
-                           N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
 
-                               *functor,
 
-                               parameters,
 
-                               residuals);
 
- }
 
- template <typename CostFunctor,
 
-           int N0, int N1, int N2, int N3, int N4,
 
-           int N5, int N6, int N7, int N8, int N9 >
 
- bool EvaluateImpl(const CostFunctor* functor,
 
-                   double const* const* parameters,
 
-                   double* residuals,
 
-                   const CostFunction* /* NOT USED */) {
 
-   return functor->Evaluate(parameters, residuals, NULL);
 
- }
 
- // This is split from the main class because C++ doesn't allow partial template
 
- // specializations for member functions. The alternative is to repeat the main
 
- // class for differing numbers of parameters, which is also unfortunate.
 
- template <typename CostFunctor,
 
-           NumericDiffMethod kMethod,
 
-           int kNumResiduals,
 
-           int N0, int N1, int N2, int N3, int N4,
 
-           int N5, int N6, int N7, int N8, int N9,
 
-           int kParameterBlock,
 
-           int kParameterBlockSize>
 
- struct NumericDiff {
 
-   // Mutates parameters but must restore them before return.
 
-   static bool EvaluateJacobianForParameterBlock(
 
-       const CostFunctor* functor,
 
-       double const* residuals_at_eval_point,
 
-       const double relative_step_size,
 
-       double **parameters,
 
-       double *jacobian) {
 
-     using Eigen::Map;
 
-     using Eigen::Matrix;
 
-     using Eigen::RowMajor;
 
-     using Eigen::ColMajor;
 
-     typedef Matrix<double, kNumResiduals, 1> ResidualVector;
 
-     typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
 
-     typedef Matrix<double, kNumResiduals, kParameterBlockSize,
 
-                    (kParameterBlockSize == 1 &&
 
-                     kNumResiduals > 1) ? ColMajor : RowMajor> JacobianMatrix;
 
-     Map<JacobianMatrix> parameter_jacobian(jacobian,
 
-                                            kNumResiduals,
 
-                                            kParameterBlockSize);
 
-     // Mutate 1 element at a time and then restore.
 
-     Map<ParameterVector> x_plus_delta(parameters[kParameterBlock],
 
-                                       kParameterBlockSize);
 
-     ParameterVector x(x_plus_delta);
 
-     ParameterVector step_size = x.array().abs() * relative_step_size;
 
-     // To handle cases where a parameter is exactly zero, instead use
 
-     // the mean step_size for the other dimensions. If all the
 
-     // parameters are zero, there's no good answer. Take
 
-     // relative_step_size as a guess and hope for the best.
 
-     const double fallback_step_size =
 
-         (step_size.sum() == 0)
 
-         ? relative_step_size
 
-         : step_size.sum() / step_size.rows();
 
-     // For each parameter in the parameter block, use finite differences to
 
-     // compute the derivative for that parameter.
 
-     for (int j = 0; j < kParameterBlockSize; ++j) {
 
-       const double delta =
 
-           (step_size(j) == 0.0) ? fallback_step_size : step_size(j);
 
-       x_plus_delta(j) = x(j) + delta;
 
-       double residuals[kNumResiduals];  // NOLINT
 
-       if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
 
-               functor, parameters, residuals, functor)) {
 
-         return false;
 
-       }
 
-       // Compute this column of the jacobian in 3 steps:
 
-       // 1. Store residuals for the forward part.
 
-       // 2. Subtract residuals for the backward (or 0) part.
 
-       // 3. Divide out the run.
 
-       parameter_jacobian.col(j) =
 
-           Map<const ResidualVector>(residuals, kNumResiduals);
 
-       double one_over_delta = 1.0 / delta;
 
-       if (kMethod == CENTRAL) {
 
-         // Compute the function on the other side of x(j).
 
-         x_plus_delta(j) = x(j) - delta;
 
-         if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
 
-                 functor, parameters, residuals, functor)) {
 
-           return false;
 
-         }
 
-         parameter_jacobian.col(j) -=
 
-             Map<ResidualVector>(residuals, kNumResiduals, 1);
 
-         one_over_delta /= 2;
 
-       } else {
 
-         // Forward difference only; reuse existing residuals evaluation.
 
-         parameter_jacobian.col(j) -=
 
-             Map<const ResidualVector>(residuals_at_eval_point, kNumResiduals);
 
-       }
 
-       x_plus_delta(j) = x(j);  // Restore x_plus_delta.
 
-       // Divide out the run to get slope.
 
-       parameter_jacobian.col(j) *= one_over_delta;
 
-     }
 
-     return true;
 
-   }
 
- };
 
- template <typename CostFunctor,
 
-           NumericDiffMethod kMethod,
 
-           int kNumResiduals,
 
-           int N0, int N1, int N2, int N3, int N4,
 
-           int N5, int N6, int N7, int N8, int N9,
 
-           int kParameterBlock>
 
- struct NumericDiff<CostFunctor, kMethod, kNumResiduals,
 
-                    N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,
 
-                    kParameterBlock, 0> {
 
-   // Mutates parameters but must restore them before return.
 
-   static bool EvaluateJacobianForParameterBlock(
 
-       const CostFunctor* functor,
 
-       double const* residuals_at_eval_point,
 
-       const double relative_step_size,
 
-       double **parameters,
 
-       double *jacobian) {
 
-     LOG(FATAL) << "Control should never reach here.";
 
-     return true;
 
-   }
 
- };
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
 
 
  |