| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- //
 
- // A simple example of using the Ceres minimizer.
 
- //
 
- // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
 
- // automatic differentiation.
 
- #include "ceres/ceres.h"
 
- #include "glog/logging.h"
 
- using ceres::AutoDiffCostFunction;
 
- using ceres::CostFunction;
 
- using ceres::Problem;
 
- using ceres::Solver;
 
- using ceres::Solve;
 
- // A templated cost functor that implements the residual r = 10 -
 
- // x. The method operator() is templated so that we can then use an
 
- // automatic differentiation wrapper around it to generate its
 
- // derivatives.
 
- struct CostFunctor {
 
-   template <typename T> bool operator()(const T* const x, T* residual) const {
 
-     residual[0] = 10.0 - x[0];
 
-     return true;
 
-   }
 
- };
 
- int main(int argc, char** argv) {
 
-   google::InitGoogleLogging(argv[0]);
 
-   // The variable to solve for with its initial value. It will be
 
-   // mutated in place by the solver.
 
-   double x = 0.5;
 
-   const double initial_x = x;
 
-   // Build the problem.
 
-   Problem problem;
 
-   // Set up the only cost function (also known as residual). This uses
 
-   // auto-differentiation to obtain the derivative (jacobian).
 
-   CostFunction* cost_function =
 
-       new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
 
-   problem.AddResidualBlock(cost_function, NULL, &x);
 
-   // Run the solver!
 
-   Solver::Options options;
 
-   options.minimizer_progress_to_stdout = true;
 
-   Solver::Summary summary;
 
-   Solve(options, &problem, &summary);
 
-   std::cout << summary.BriefReport() << "\n";
 
-   std::cout << "x : " << initial_x
 
-             << " -> " << x << "\n";
 
-   return 0;
 
- }
 
 
  |