| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)//// Create CostFunctions as needed by the least squares framework with jacobians// computed via numeric (a.k.a. finite) differentiation. For more details see// http://en.wikipedia.org/wiki/Numerical_differentiation.//// To get an numerically differentiated cost function, you must define// a class with a operator() (a functor) that computes the residuals.//// The function must write the computed value in the last argument// (the only non-const one) and return true to indicate success.// Please see cost_function.h for details on how the return value// maybe used to impose simple constraints on the parameter block.//// For example, consider a scalar error e = k - x'y, where both x and y are// two-dimensional column vector parameters, the prime sign indicates// transposition, and k is a constant. The form of this error, which is the// difference between a constant and an expression, is a common pattern in least// squares problems. For example, the value x'y might be the model expectation// for a series of measurements, where there is an instance of the cost function// for each measurement k.//// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,// the squaring is implicitly done by the optimization framework.//// To write an numerically-differentiable cost function for the above model,// first define the object////   class MyScalarCostFunctor {//     explicit MyScalarCostFunctor(double k): k_(k) {}////     bool operator()(const double* const x,//                     const double* const y,//                     double* residuals) const {//       residuals[0] = k_ - x[0] * y[0] - x[1] * y[1];//       return true;//     }////    private://     double k_;//   };//// Note that in the declaration of operator() the input parameters x// and y come first, and are passed as const pointers to arrays of// doubles. If there were three input parameters, then the third input// parameter would come after y. The output is always the last// parameter, and is also a pointer to an array. In the example above,// the residual is a scalar, so only residuals[0] is set.//// Then given this class definition, the numerically differentiated// cost function with central differences used for computing the// derivative can be constructed as follows.////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(//           new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^//                                                             |     |  |  |//                                 Finite Differencing Scheme -+     |  |  |//                                 Dimension of residual ------------+  |  |//                                 Dimension of x ----------------------+  |//                                 Dimension of y -------------------------+//// In this example, there is usually an instance for each measurement of k.//// In the instantiation above, the template parameters following// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing// a 1-dimensional output from two arguments, both 2-dimensional.//// NumericDiffCostFunction also supports cost functions with a// runtime-determined number of residuals. For example:////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(//           new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^//           TAKE_OWNERSHIP,                                            |     |  |//           runtime_number_of_residuals); <----+                       |     |  |//                                              |                       |     |  |//                                              |                       |     |  |//             Actual number of residuals ------+                       |     |  |//             Indicate dynamic number of residuals --------------------+     |  |//             Dimension of x ------------------------------------------------+  |//             Dimension of y ---------------------------------------------------+//// The central difference method is considerably more accurate at the cost of// twice as many function evaluations than forward difference. Consider using// central differences begin with, and only after that works, trying forward// difference to improve performance.//// WARNING #1: A common beginner's error when first using// NumericDiffCostFunction is to get the sizing wrong. In particular,// there is a tendency to set the template parameters to (dimension of// residual, number of parameters) instead of passing a dimension// parameter for *every parameter*. In the example above, that would// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'// argument. Please be careful when setting the size parameters.////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ALTERNATE INTERFACE//// For a variety of reasons, including compatibility with legacy code,// NumericDiffCostFunction can also take CostFunction objects as// input. The following describes how.//// To get a numerically differentiated cost function, define a// subclass of CostFunction such that the Evaluate() function ignores// the jacobian parameter. The numeric differentiation wrapper will// fill in the jacobian parameter if necessary by repeatedly calling// the Evaluate() function with small changes to the appropriate// parameters, and computing the slope. For performance, the numeric// differentiation wrapper class is templated on the concrete cost// function, even though it could be implemented only in terms of the// virtual CostFunction interface.//// The numerically differentiated version of a cost function for a cost function// can be constructed as follows:////   CostFunction* cost_function//       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(//           new MyCostFunction(...), TAKE_OWNERSHIP);//// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8// respectively. Look at the tests for a more detailed example.//// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_#include <array>#include <memory>#include "Eigen/Dense"#include "ceres/cost_function.h"#include "ceres/internal/numeric_diff.h"#include "ceres/internal/parameter_dims.h"#include "ceres/numeric_diff_options.h"#include "ceres/sized_cost_function.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {template <typename CostFunctor,          NumericDiffMethodType method = CENTRAL,          int kNumResiduals = 0,  // Number of residuals, or ceres::DYNAMIC          int... Ns>              // Parameters dimensions for each block.class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { public:  NumericDiffCostFunction(      CostFunctor* functor,      Ownership ownership = TAKE_OWNERSHIP,      int num_residuals = kNumResiduals,      const NumericDiffOptions& options = NumericDiffOptions())      : functor_(functor),        ownership_(ownership),        options_(options) {    if (kNumResiduals == DYNAMIC) {      SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);    }  }  ~NumericDiffCostFunction() {    if (ownership_ != TAKE_OWNERSHIP) {      functor_.release();    }  }  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    using internal::FixedArray;    using internal::NumericDiff;    using ParameterDims =        typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;    using Parameters = typename ParameterDims::Parameters;    constexpr int kNumParameters = ParameterDims::kNumParameters;    constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks;    // Get the function value (residuals) at the the point to evaluate.    if (!internal::VariadicEvaluate<ParameterDims>(*functor_,                                                   parameters,                                                   residuals)) {      return false;    }    if (jacobians == NULL) {      return true;    }    // Create a copy of the parameters which will get mutated.    FixedArray<double> parameters_copy(kNumParameters);    std::array<double*, kNumParameterBlocks> parameters_reference_copy =        ParameterDims::GetUnpackedParameters(parameters_copy.data());    for (int block = 0; block < kNumParameterBlocks; ++block) {      memcpy(parameters_reference_copy[block], parameters[block],             sizeof(double) * ParameterDims::GetDim(block));    }    internal::EvaluateJacobianForParameterBlocks<ParameterDims>::template Apply<        method, kNumResiduals>(          functor_.get(),          residuals,          options_,          SizedCostFunction<kNumResiduals, Ns...>::num_residuals(),          parameters_reference_copy.data(),          jacobians);    return true;  } private:  std::unique_ptr<CostFunctor> functor_;  Ownership ownership_;  NumericDiffOptions options_;};}  // namespace ceres#endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 |