| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//// A minimal, self-contained bundle adjuster using Ceres, that reads// files from University of Washington' Bundle Adjustment in the Large dataset:// http://grail.cs.washington.edu/projects/bal//// This does not use the best configuration for solving; see the more involved// bundle_adjuster.cc file for details.#include <cmath>#include <cstdio>#include <iostream>#include "ceres/ceres.h"#include "ceres/rotation.h"// Read a Bundle Adjustment in the Large dataset.class BALProblem { public:  ~BALProblem() {    delete[] point_index_;    delete[] camera_index_;    delete[] observations_;    delete[] parameters_;  }  int num_observations() const { return num_observations_; }  const double* observations() const { return observations_; }  double* mutable_cameras() { return parameters_; }  double* mutable_points() { return parameters_ + 9 * num_cameras_; }  double* mutable_camera_for_observation(int i) {    return mutable_cameras() + camera_index_[i] * 9;  }  double* mutable_point_for_observation(int i) {    return mutable_points() + point_index_[i] * 3;  }  bool LoadFile(const char* filename) {    FILE* fptr = fopen(filename, "r");    if (fptr == NULL) {      return false;    };    FscanfOrDie(fptr, "%d", &num_cameras_);    FscanfOrDie(fptr, "%d", &num_points_);    FscanfOrDie(fptr, "%d", &num_observations_);    point_index_ = new int[num_observations_];    camera_index_ = new int[num_observations_];    observations_ = new double[2 * num_observations_];    num_parameters_ = 9 * num_cameras_ + 3 * num_points_;    parameters_ = new double[num_parameters_];    for (int i = 0; i < num_observations_; ++i) {      FscanfOrDie(fptr, "%d", camera_index_ + i);      FscanfOrDie(fptr, "%d", point_index_ + i);      for (int j = 0; j < 2; ++j) {        FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);      }    }    for (int i = 0; i < num_parameters_; ++i) {      FscanfOrDie(fptr, "%lf", parameters_ + i);    }    return true;  } private:  template <typename T>  void FscanfOrDie(FILE* fptr, const char* format, T* value) {    int num_scanned = fscanf(fptr, format, value);    if (num_scanned != 1) {      LOG(FATAL) << "Invalid UW data file.";    }  }  int num_cameras_;  int num_points_;  int num_observations_;  int num_parameters_;  int* point_index_;  int* camera_index_;  double* observations_;  double* parameters_;};// Templated pinhole camera model for used with Ceres.  The camera is// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for// focal length and 2 for radial distortion. The principal point is not modeled// (i.e. it is assumed be located at the image center).struct SnavelyReprojectionError {  SnavelyReprojectionError(double observed_x, double observed_y)      : observed_x(observed_x), observed_y(observed_y) {}  template <typename T>  bool operator()(const T* const camera,                  const T* const point,                  T* residuals) const {    // camera[0,1,2] are the angle-axis rotation.    T p[3];    ceres::AngleAxisRotatePoint(camera, point, p);    // camera[3,4,5] are the translation.    p[0] += camera[3];    p[1] += camera[4];    p[2] += camera[5];    // Compute the center of distortion. The sign change comes from    // the camera model that Noah Snavely's Bundler assumes, whereby    // the camera coordinate system has a negative z axis.    T xp = -p[0] / p[2];    T yp = -p[1] / p[2];    // Apply second and fourth order radial distortion.    const T& l1 = camera[7];    const T& l2 = camera[8];    T r2 = xp * xp + yp * yp;    T distortion = 1.0 + r2 * (l1 + l2 * r2);    // Compute final projected point position.    const T& focal = camera[6];    T predicted_x = focal * distortion * xp;    T predicted_y = focal * distortion * yp;    // The error is the difference between the predicted and observed position.    residuals[0] = predicted_x - observed_x;    residuals[1] = predicted_y - observed_y;    return true;  }  // Factory to hide the construction of the CostFunction object from  // the client code.  static ceres::CostFunction* Create(const double observed_x,                                     const double observed_y) {    return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(        new SnavelyReprojectionError(observed_x, observed_y)));  }  double observed_x;  double observed_y;};int main(int argc, char** argv) {  google::InitGoogleLogging(argv[0]);  if (argc != 2) {    std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n";    return 1;  }  BALProblem bal_problem;  if (!bal_problem.LoadFile(argv[1])) {    std::cerr << "ERROR: unable to open file " << argv[1] << "\n";    return 1;  }  const double* observations = bal_problem.observations();  // Create residuals for each observation in the bundle adjustment problem. The  // parameters for cameras and points are added automatically.  ceres::Problem problem;  for (int i = 0; i < bal_problem.num_observations(); ++i) {    // Each Residual block takes a point and a camera as input and outputs a 2    // dimensional residual. Internally, the cost function stores the observed    // image location and compares the reprojection against the observation.    ceres::CostFunction* cost_function = SnavelyReprojectionError::Create(        observations[2 * i + 0], observations[2 * i + 1]);    problem.AddResidualBlock(cost_function,                             NULL /* squared loss */,                             bal_problem.mutable_camera_for_observation(i),                             bal_problem.mutable_point_for_observation(i));  }  // Make Ceres automatically detect the bundle structure. Note that the  // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower  // for standard bundle adjustment problems.  ceres::Solver::Options options;  options.linear_solver_type = ceres::DENSE_SCHUR;  options.minimizer_progress_to_stdout = true;  ceres::Solver::Summary summary;  ceres::Solve(options, &problem, &summary);  std::cout << summary.FullReport() << "\n";  return 0;}
 |