| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // An example of solving a dynamically sized problem with various
 
- // solvers and loss functions.
 
- //
 
- // For a simpler bare bones example of doing bundle adjustment with
 
- // Ceres, please see simple_bundle_adjuster.cc.
 
- //
 
- // NOTE: This example will not compile without gflags and SuiteSparse.
 
- //
 
- // The problem being solved here is known as a Bundle Adjustment
 
- // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
 
- // a set of cameras P_1, ..., P_m. If the point X_i is visible in
 
- // image j, then there is a 2D observation u_ij that is the expected
 
- // projection of X_i using P_j. The aim of this optimization is to
 
- // find values of X_i and P_j such that the reprojection error
 
- //
 
- //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
 
- //
 
- // is minimized.
 
- //
 
- // The problem used here comes from a collection of bundle adjustment
 
- // problems published at University of Washington.
 
- // http://grail.cs.washington.edu/projects/bal
 
- #include <algorithm>
 
- #include <cmath>
 
- #include <cstdio>
 
- #include <cstdlib>
 
- #include <string>
 
- #include <vector>
 
- #include "bal_problem.h"
 
- #include "ceres/ceres.h"
 
- #include "gflags/gflags.h"
 
- #include "glog/logging.h"
 
- #include "snavely_reprojection_error.h"
 
- // clang-format makes the gflags definitions too verbose
 
- // clang-format off
 
- DEFINE_string(input, "", "Input File name");
 
- DEFINE_string(trust_region_strategy, "levenberg_marquardt",
 
-               "Options are: levenberg_marquardt, dogleg.");
 
- DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
 
-               "subspace_dogleg.");
 
- DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
 
-             "refine each successful trust region step.");
 
- DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
 
-               "automatic, cameras, points, cameras,points, points,cameras");
 
- DEFINE_string(linear_solver, "sparse_schur", "Options are: "
 
-               "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
 
-               "dense_qr, dense_normal_cholesky and cgnr.");
 
- DEFINE_bool(explicit_schur_complement, false, "If using ITERATIVE_SCHUR "
 
-             "then explicitly compute the Schur complement.");
 
- DEFINE_string(preconditioner, "jacobi", "Options are: "
 
-               "identity, jacobi, schur_jacobi, cluster_jacobi, "
 
-               "cluster_tridiagonal.");
 
- DEFINE_string(visibility_clustering, "canonical_views",
 
-               "single_linkage, canonical_views");
 
- DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
 
-               "Options are: suite_sparse and cx_sparse.");
 
- DEFINE_string(dense_linear_algebra_library, "eigen",
 
-               "Options are: eigen and lapack.");
 
- DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
 
- DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
 
-             "rotations. If false, angle axis is used.");
 
- DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
 
-             "parameterization.");
 
- DEFINE_bool(robustify, false, "Use a robust loss function.");
 
- DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
 
-               "accuracy of each linear solve of the truncated newton step. "
 
-               "Changing this parameter can affect solve performance.");
 
- DEFINE_int32(num_threads, 1, "Number of threads.");
 
- DEFINE_int32(num_iterations, 5, "Number of iterations.");
 
- DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
 
- DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
 
-             " nonmonotic steps.");
 
- DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
 
-               "perturbation.");
 
- DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
 
-               "translation perturbation.");
 
- DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
 
-               "perturbation.");
 
- DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
 
-              "of the pseudo random number generator used to generate "
 
-              "the pertubations.");
 
- DEFINE_bool(line_search, false, "Use a line search instead of trust region "
 
-             "algorithm.");
 
- DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");
 
- DEFINE_int32(max_num_refinement_iterations, 0, "Iterative refinement iterations");
 
- DEFINE_string(initial_ply, "", "Export the BAL file data as a PLY file.");
 
- DEFINE_string(final_ply, "", "Export the refined BAL file data as a PLY "
 
-               "file.");
 
- // clang-format on
 
- namespace ceres {
 
- namespace examples {
 
- namespace {
 
- void SetLinearSolver(Solver::Options* options) {
 
-   CHECK(StringToLinearSolverType(FLAGS_linear_solver,
 
-                                  &options->linear_solver_type));
 
-   CHECK(StringToPreconditionerType(FLAGS_preconditioner,
 
-                                    &options->preconditioner_type));
 
-   CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering,
 
-                                          &options->visibility_clustering_type));
 
-   CHECK(StringToSparseLinearAlgebraLibraryType(
 
-       FLAGS_sparse_linear_algebra_library,
 
-       &options->sparse_linear_algebra_library_type));
 
-   CHECK(StringToDenseLinearAlgebraLibraryType(
 
-       FLAGS_dense_linear_algebra_library,
 
-       &options->dense_linear_algebra_library_type));
 
-   options->use_explicit_schur_complement = FLAGS_explicit_schur_complement;
 
-   options->use_mixed_precision_solves = FLAGS_mixed_precision_solves;
 
-   options->max_num_refinement_iterations = FLAGS_max_num_refinement_iterations;
 
- }
 
- void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
 
-   const int num_points = bal_problem->num_points();
 
-   const int point_block_size = bal_problem->point_block_size();
 
-   double* points = bal_problem->mutable_points();
 
-   const int num_cameras = bal_problem->num_cameras();
 
-   const int camera_block_size = bal_problem->camera_block_size();
 
-   double* cameras = bal_problem->mutable_cameras();
 
-   if (options->use_inner_iterations) {
 
-     if (FLAGS_blocks_for_inner_iterations == "cameras") {
 
-       LOG(INFO) << "Camera blocks for inner iterations";
 
-       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
 
-       for (int i = 0; i < num_cameras; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             cameras + camera_block_size * i, 0);
 
-       }
 
-     } else if (FLAGS_blocks_for_inner_iterations == "points") {
 
-       LOG(INFO) << "Point blocks for inner iterations";
 
-       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
 
-       for (int i = 0; i < num_points; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             points + point_block_size * i, 0);
 
-       }
 
-     } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
 
-       LOG(INFO) << "Camera followed by point blocks for inner iterations";
 
-       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
 
-       for (int i = 0; i < num_cameras; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             cameras + camera_block_size * i, 0);
 
-       }
 
-       for (int i = 0; i < num_points; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             points + point_block_size * i, 1);
 
-       }
 
-     } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
 
-       LOG(INFO) << "Point followed by camera blocks for inner iterations";
 
-       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
 
-       for (int i = 0; i < num_cameras; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             cameras + camera_block_size * i, 1);
 
-       }
 
-       for (int i = 0; i < num_points; ++i) {
 
-         options->inner_iteration_ordering->AddElementToGroup(
 
-             points + point_block_size * i, 0);
 
-       }
 
-     } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
 
-       LOG(INFO) << "Choosing automatic blocks for inner iterations";
 
-     } else {
 
-       LOG(FATAL) << "Unknown block type for inner iterations: "
 
-                  << FLAGS_blocks_for_inner_iterations;
 
-     }
 
-   }
 
-   // Bundle adjustment problems have a sparsity structure that makes
 
-   // them amenable to more specialized and much more efficient
 
-   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
 
-   // ITERATIVE_SCHUR solvers make use of this specialized
 
-   // structure.
 
-   //
 
-   // This can either be done by specifying Options::ordering_type =
 
-   // ceres::SCHUR, in which case Ceres will automatically determine
 
-   // the right ParameterBlock ordering, or by manually specifying a
 
-   // suitable ordering vector and defining
 
-   // Options::num_eliminate_blocks.
 
-   if (FLAGS_ordering == "automatic") {
 
-     return;
 
-   }
 
-   ceres::ParameterBlockOrdering* ordering = new ceres::ParameterBlockOrdering;
 
-   // The points come before the cameras.
 
-   for (int i = 0; i < num_points; ++i) {
 
-     ordering->AddElementToGroup(points + point_block_size * i, 0);
 
-   }
 
-   for (int i = 0; i < num_cameras; ++i) {
 
-     // When using axis-angle, there is a single parameter block for
 
-     // the entire camera.
 
-     ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
 
-   }
 
-   options->linear_solver_ordering.reset(ordering);
 
- }
 
- void SetMinimizerOptions(Solver::Options* options) {
 
-   options->max_num_iterations = FLAGS_num_iterations;
 
-   options->minimizer_progress_to_stdout = true;
 
-   options->num_threads = FLAGS_num_threads;
 
-   options->eta = FLAGS_eta;
 
-   options->max_solver_time_in_seconds = FLAGS_max_solver_time;
 
-   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
 
-   if (FLAGS_line_search) {
 
-     options->minimizer_type = ceres::LINE_SEARCH;
 
-   }
 
-   CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
 
-                                         &options->trust_region_strategy_type));
 
-   CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
 
-   options->use_inner_iterations = FLAGS_inner_iterations;
 
- }
 
- void SetSolverOptionsFromFlags(BALProblem* bal_problem,
 
-                                Solver::Options* options) {
 
-   SetMinimizerOptions(options);
 
-   SetLinearSolver(options);
 
-   SetOrdering(bal_problem, options);
 
- }
 
- void BuildProblem(BALProblem* bal_problem, Problem* problem) {
 
-   const int point_block_size = bal_problem->point_block_size();
 
-   const int camera_block_size = bal_problem->camera_block_size();
 
-   double* points = bal_problem->mutable_points();
 
-   double* cameras = bal_problem->mutable_cameras();
 
-   // Observations is 2*num_observations long array observations =
 
-   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
 
-   // and y positions of the observation.
 
-   const double* observations = bal_problem->observations();
 
-   for (int i = 0; i < bal_problem->num_observations(); ++i) {
 
-     CostFunction* cost_function;
 
-     // Each Residual block takes a point and a camera as input and
 
-     // outputs a 2 dimensional residual.
 
-     cost_function = (FLAGS_use_quaternions)
 
-                         ? SnavelyReprojectionErrorWithQuaternions::Create(
 
-                               observations[2 * i + 0], observations[2 * i + 1])
 
-                         : SnavelyReprojectionError::Create(
 
-                               observations[2 * i + 0], observations[2 * i + 1]);
 
-     // If enabled use Huber's loss function.
 
-     LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
 
-     // Each observation correponds to a pair of a camera and a point
 
-     // which are identified by camera_index()[i] and point_index()[i]
 
-     // respectively.
 
-     double* camera =
 
-         cameras + camera_block_size * bal_problem->camera_index()[i];
 
-     double* point = points + point_block_size * bal_problem->point_index()[i];
 
-     problem->AddResidualBlock(cost_function, loss_function, camera, point);
 
-   }
 
-   if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
 
-     LocalParameterization* camera_parameterization =
 
-         new ProductParameterization(new QuaternionParameterization(),
 
-                                     new IdentityParameterization(6));
 
-     for (int i = 0; i < bal_problem->num_cameras(); ++i) {
 
-       problem->SetParameterization(cameras + camera_block_size * i,
 
-                                    camera_parameterization);
 
-     }
 
-   }
 
- }
 
- void SolveProblem(const char* filename) {
 
-   BALProblem bal_problem(filename, FLAGS_use_quaternions);
 
-   if (!FLAGS_initial_ply.empty()) {
 
-     bal_problem.WriteToPLYFile(FLAGS_initial_ply);
 
-   }
 
-   Problem problem;
 
-   srand(FLAGS_random_seed);
 
-   bal_problem.Normalize();
 
-   bal_problem.Perturb(
 
-       FLAGS_rotation_sigma, FLAGS_translation_sigma, FLAGS_point_sigma);
 
-   BuildProblem(&bal_problem, &problem);
 
-   Solver::Options options;
 
-   SetSolverOptionsFromFlags(&bal_problem, &options);
 
-   options.gradient_tolerance = 1e-16;
 
-   options.function_tolerance = 1e-16;
 
-   Solver::Summary summary;
 
-   Solve(options, &problem, &summary);
 
-   std::cout << summary.FullReport() << "\n";
 
-   if (!FLAGS_final_ply.empty()) {
 
-     bal_problem.WriteToPLYFile(FLAGS_final_ply);
 
-   }
 
- }
 
- }  // namespace
 
- }  // namespace examples
 
- }  // namespace ceres
 
- int main(int argc, char** argv) {
 
-   GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
 
-   google::InitGoogleLogging(argv[0]);
 
-   if (FLAGS_input.empty()) {
 
-     LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";
 
-     return 1;
 
-   }
 
-   CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
 
-       << "--use_local_parameterization can only be used with "
 
-       << "--use_quaternions.";
 
-   ceres::examples::SolveProblem(FLAGS_input.c_str());
 
-   return 0;
 
- }
 
 
  |