| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// Preconditioners for linear systems that arise in Structure from// Motion problems. VisibilityBasedPreconditioner implements:////  CLUSTER_JACOBI//  CLUSTER_TRIDIAGONAL//// Detailed descriptions of these preconditions beyond what is// documented here can be found in//// Visibility Based Preconditioning for Bundle Adjustment// A. Kushal & S. Agarwal, CVPR 2012.//// http://www.cs.washington.edu/homes/sagarwal/vbp.pdf//// The two preconditioners share enough code that its most efficient// to implement them as part of the same code base.#ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_#define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_#include <memory>#include <set>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#include "ceres/graph.h"#include "ceres/linear_solver.h"#include "ceres/pair_hash.h"#include "ceres/preconditioner.h"#include "ceres/sparse_cholesky.h"namespace ceres {namespace internal {class BlockRandomAccessSparseMatrix;class BlockSparseMatrix;struct CompressedRowBlockStructure;class SchurEliminatorBase;// This class implements visibility based preconditioners for// Structure from Motion/Bundle Adjustment problems. The name// VisibilityBasedPreconditioner comes from the fact that the sparsity// structure of the preconditioner matrix is determined by analyzing// the visibility structure of the scene, i.e. which cameras see which// points.//// The key idea of visibility based preconditioning is to identify// cameras that we expect have strong interactions, and then using the// entries in the Schur complement matrix corresponding to these// camera pairs as an approximation to the full Schur complement.//// CLUSTER_JACOBI identifies these camera pairs by clustering cameras,// and considering all non-zero camera pairs within each cluster. The// clustering in the current implementation is done using the// Canonical Views algorithm of Simon et al. (see// canonical_views_clustering.h). For the purposes of clustering, the// similarity or the degree of interaction between a pair of cameras// is measured by counting the number of points visible in both the// cameras. Thus the name VisibilityBasedPreconditioner. Further, if we// were to permute the parameter blocks such that all the cameras in// the same cluster occur contiguously, the preconditioner matrix will// be a block diagonal matrix with blocks corresponding to the// clusters. Thus in analogy with the Jacobi preconditioner we refer// to this as the CLUSTER_JACOBI preconditioner.//// CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI// preconditioner by considering the interaction between clusters and// identifying strong interactions between cluster pairs. This is done// by constructing a weighted graph on the clusters, with the weight// on the edges connecting two clusters proportional to the number of// 3D points visible to cameras in both the clusters. A degree-2// maximum spanning forest is identified in this graph and the camera// pairs contained in the edges of this forest are added to the// preconditioner. The detailed reasoning for this construction is// explained in the paper mentioned above.//// Degree-2 spanning trees and forests have the property that they// correspond to tri-diagonal matrices. Thus there exist a permutation// of the camera blocks under which the CLUSTER_TRIDIAGONAL// preconditioner matrix is a block tridiagonal matrix, and thus the// name for the preconditioner.//// Thread Safety: This class is NOT thread safe.//// Example usage:////   LinearSolver::Options options;//   options.preconditioner_type = CLUSTER_JACOBI;//   options.elimination_groups.push_back(num_points);//   options.elimination_groups.push_back(num_cameras);//   VisibilityBasedPreconditioner preconditioner(//      *A.block_structure(), options);//   preconditioner.Update(A, NULL);//   preconditioner.RightMultiply(x, y);class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner { public:  // Initialize the symbolic structure of the preconditioner. bs is  // the block structure of the linear system to be solved. It is used  // to determine the sparsity structure of the preconditioner matrix.  //  // It has the same structural requirement as other Schur complement  // based solvers. Please see schur_eliminator.h for more details.  VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,                                const Preconditioner::Options& options);  VisibilityBasedPreconditioner(const VisibilityBasedPreconditioner&) = delete;  void operator=(const VisibilityBasedPreconditioner&) = delete;  virtual ~VisibilityBasedPreconditioner();  // Preconditioner interface  void RightMultiply(const double* x, double* y) const final;  int num_rows() const final;  friend class VisibilityBasedPreconditionerTest; private:  bool UpdateImpl(const BlockSparseMatrix& A, const double* D) final;  void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);  void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);  void InitStorage(const CompressedRowBlockStructure& bs);  void InitEliminator(const CompressedRowBlockStructure& bs);  LinearSolverTerminationType Factorize();  void ScaleOffDiagonalCells();  void ClusterCameras(const std::vector<std::set<int>>& visibility);  void FlattenMembershipMap(const std::unordered_map<int, int>& membership_map,                            std::vector<int>* membership_vector) const;  void ComputeClusterVisibility(      const std::vector<std::set<int>>& visibility,      std::vector<std::set<int>>* cluster_visibility) const;  WeightedGraph<int>* CreateClusterGraph(      const std::vector<std::set<int>>& visibility) const;  void ForestToClusterPairs(const WeightedGraph<int>& forest,                            std::unordered_set<std::pair<int, int>, pair_hash>* cluster_pairs) const;  void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);  bool IsBlockPairInPreconditioner(int block1, int block2) const;  bool IsBlockPairOffDiagonal(int block1, int block2) const;  Preconditioner::Options options_;  // Number of parameter blocks in the schur complement.  int num_blocks_;  int num_clusters_;  // Sizes of the blocks in the schur complement.  std::vector<int> block_size_;  // Mapping from cameras to clusters.  std::vector<int> cluster_membership_;  // Non-zero camera pairs from the schur complement matrix that are  // present in the preconditioner, sorted by row (first element of  // each pair), then column (second).  std::set<std::pair<int, int>> block_pairs_;  // Set of cluster pairs (including self pairs (i,i)) in the  // preconditioner.  std::unordered_set<std::pair<int, int>, pair_hash> cluster_pairs_;  std::unique_ptr<SchurEliminatorBase> eliminator_;  // Preconditioner matrix.  std::unique_ptr<BlockRandomAccessSparseMatrix> m_;  std::unique_ptr<SparseCholesky> sparse_cholesky_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
 |