| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/visibility_based_preconditioner.h"
 
- #include <algorithm>
 
- #include <functional>
 
- #include <iterator>
 
- #include <memory>
 
- #include <set>
 
- #include <utility>
 
- #include <vector>
 
- #include "Eigen/Dense"
 
- #include "ceres/block_random_access_sparse_matrix.h"
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/canonical_views_clustering.h"
 
- #include "ceres/graph.h"
 
- #include "ceres/graph_algorithms.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/schur_eliminator.h"
 
- #include "ceres/single_linkage_clustering.h"
 
- #include "ceres/visibility.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::make_pair;
 
- using std::pair;
 
- using std::set;
 
- using std::swap;
 
- using std::vector;
 
- // TODO(sameeragarwal): Currently these are magic weights for the
 
- // preconditioner construction. Move these higher up into the Options
 
- // struct and provide some guidelines for choosing them.
 
- //
 
- // This will require some more work on the clustering algorithm and
 
- // possibly some more refactoring of the code.
 
- static constexpr double kCanonicalViewsSizePenaltyWeight = 3.0;
 
- static constexpr double kCanonicalViewsSimilarityPenaltyWeight = 0.0;
 
- static constexpr double kSingleLinkageMinSimilarity = 0.9;
 
- VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
 
-     const CompressedRowBlockStructure& bs,
 
-     const Preconditioner::Options& options)
 
-     : options_(options), num_blocks_(0), num_clusters_(0) {
 
-   CHECK_GT(options_.elimination_groups.size(), 1);
 
-   CHECK_GT(options_.elimination_groups[0], 0);
 
-   CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL)
 
-       << "Unknown preconditioner type: " << options_.type;
 
-   num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
 
-   CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for "
 
-                            << "visibility based preconditioning.";
 
-   CHECK(options_.context != NULL);
 
-   // Vector of camera block sizes
 
-   block_size_.resize(num_blocks_);
 
-   for (int i = 0; i < num_blocks_; ++i) {
 
-     block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
 
-   }
 
-   const time_t start_time = time(NULL);
 
-   switch (options_.type) {
 
-     case CLUSTER_JACOBI:
 
-       ComputeClusterJacobiSparsity(bs);
 
-       break;
 
-     case CLUSTER_TRIDIAGONAL:
 
-       ComputeClusterTridiagonalSparsity(bs);
 
-       break;
 
-     default:
 
-       LOG(FATAL) << "Unknown preconditioner type";
 
-   }
 
-   const time_t structure_time = time(NULL);
 
-   InitStorage(bs);
 
-   const time_t storage_time = time(NULL);
 
-   InitEliminator(bs);
 
-   const time_t eliminator_time = time(NULL);
 
-   LinearSolver::Options sparse_cholesky_options;
 
-   sparse_cholesky_options.sparse_linear_algebra_library_type =
 
-       options_.sparse_linear_algebra_library_type;
 
-   // The preconditioner's sparsity is not available in the
 
-   // preprocessor, so the columns of the Jacobian have not been
 
-   // reordered to minimize fill in when computing its sparse Cholesky
 
-   // factorization. So we must tell the SparseCholesky object to
 
-   // perform approximate minimum-degree reordering, which is done by
 
-   // setting use_postordering to true.
 
-   sparse_cholesky_options.use_postordering = true;
 
-   sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options);
 
-   const time_t init_time = time(NULL);
 
-   VLOG(2) << "init time: " << init_time - start_time
 
-           << " structure time: " << structure_time - start_time
 
-           << " storage time:" << storage_time - structure_time
 
-           << " eliminator time: " << eliminator_time - storage_time;
 
- }
 
- VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {}
 
- // Determine the sparsity structure of the CLUSTER_JACOBI
 
- // preconditioner. It clusters cameras using their scene
 
- // visibility. The clusters form the diagonal blocks of the
 
- // preconditioner matrix.
 
- void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
 
-     const CompressedRowBlockStructure& bs) {
 
-   vector<set<int>> visibility;
 
-   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
 
-   CHECK_EQ(num_blocks_, visibility.size());
 
-   ClusterCameras(visibility);
 
-   cluster_pairs_.clear();
 
-   for (int i = 0; i < num_clusters_; ++i) {
 
-     cluster_pairs_.insert(make_pair(i, i));
 
-   }
 
- }
 
- // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
 
- // preconditioner. It clusters cameras using using the scene
 
- // visibility and then finds the strongly interacting pairs of
 
- // clusters by constructing another graph with the clusters as
 
- // vertices and approximating it with a degree-2 maximum spanning
 
- // forest. The set of edges in this forest are the cluster pairs.
 
- void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
 
-     const CompressedRowBlockStructure& bs) {
 
-   vector<set<int>> visibility;
 
-   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
 
-   CHECK_EQ(num_blocks_, visibility.size());
 
-   ClusterCameras(visibility);
 
-   // Construct a weighted graph on the set of clusters, where the
 
-   // edges are the number of 3D points/e_blocks visible in both the
 
-   // clusters at the ends of the edge. Return an approximate degree-2
 
-   // maximum spanning forest of this graph.
 
-   vector<set<int>> cluster_visibility;
 
-   ComputeClusterVisibility(visibility, &cluster_visibility);
 
-   std::unique_ptr<WeightedGraph<int>> cluster_graph(
 
-       CreateClusterGraph(cluster_visibility));
 
-   CHECK(cluster_graph != nullptr);
 
-   std::unique_ptr<WeightedGraph<int>> forest(
 
-       Degree2MaximumSpanningForest(*cluster_graph));
 
-   CHECK(forest != nullptr);
 
-   ForestToClusterPairs(*forest, &cluster_pairs_);
 
- }
 
- // Allocate storage for the preconditioner matrix.
 
- void VisibilityBasedPreconditioner::InitStorage(
 
-     const CompressedRowBlockStructure& bs) {
 
-   ComputeBlockPairsInPreconditioner(bs);
 
-   m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
 
- }
 
- // Call the canonical views algorithm and cluster the cameras based on
 
- // their visibility sets. The visibility set of a camera is the set of
 
- // e_blocks/3D points in the scene that are seen by it.
 
- //
 
- // The cluster_membership_ vector is updated to indicate cluster
 
- // memberships for each camera block.
 
- void VisibilityBasedPreconditioner::ClusterCameras(
 
-     const vector<set<int>>& visibility) {
 
-   std::unique_ptr<WeightedGraph<int>> schur_complement_graph(
 
-       CreateSchurComplementGraph(visibility));
 
-   CHECK(schur_complement_graph != nullptr);
 
-   std::unordered_map<int, int> membership;
 
-   if (options_.visibility_clustering_type == CANONICAL_VIEWS) {
 
-     vector<int> centers;
 
-     CanonicalViewsClusteringOptions clustering_options;
 
-     clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight;
 
-     clustering_options.similarity_penalty_weight =
 
-         kCanonicalViewsSimilarityPenaltyWeight;
 
-     ComputeCanonicalViewsClustering(
 
-         clustering_options, *schur_complement_graph, ¢ers, &membership);
 
-     num_clusters_ = centers.size();
 
-   } else if (options_.visibility_clustering_type == SINGLE_LINKAGE) {
 
-     SingleLinkageClusteringOptions clustering_options;
 
-     clustering_options.min_similarity = kSingleLinkageMinSimilarity;
 
-     num_clusters_ = ComputeSingleLinkageClustering(
 
-         clustering_options, *schur_complement_graph, &membership);
 
-   } else {
 
-     LOG(FATAL) << "Unknown visibility clustering algorithm.";
 
-   }
 
-   CHECK_GT(num_clusters_, 0);
 
-   VLOG(2) << "num_clusters: " << num_clusters_;
 
-   FlattenMembershipMap(membership, &cluster_membership_);
 
- }
 
- // Compute the block sparsity structure of the Schur complement
 
- // matrix. For each pair of cameras contributing a non-zero cell to
 
- // the schur complement, determine if that cell is present in the
 
- // preconditioner or not.
 
- //
 
- // A pair of cameras contribute a cell to the preconditioner if they
 
- // are part of the same cluster or if the two clusters that they
 
- // belong have an edge connecting them in the degree-2 maximum
 
- // spanning forest.
 
- //
 
- // For example, a camera pair (i,j) where i belongs to cluster1 and
 
- // j belongs to cluster2 (assume that cluster1 < cluster2).
 
- //
 
- // The cell corresponding to (i,j) is present in the preconditioner
 
- // if cluster1 == cluster2 or the pair (cluster1, cluster2) were
 
- // connected by an edge in the degree-2 maximum spanning forest.
 
- //
 
- // Since we have already expanded the forest into a set of camera
 
- // pairs/edges, including self edges, the check can be reduced to
 
- // checking membership of (cluster1, cluster2) in cluster_pairs_.
 
- void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
 
-     const CompressedRowBlockStructure& bs) {
 
-   block_pairs_.clear();
 
-   for (int i = 0; i < num_blocks_; ++i) {
 
-     block_pairs_.insert(make_pair(i, i));
 
-   }
 
-   int r = 0;
 
-   const int num_row_blocks = bs.rows.size();
 
-   const int num_eliminate_blocks = options_.elimination_groups[0];
 
-   // Iterate over each row of the matrix. The block structure of the
 
-   // matrix is assumed to be sorted in order of the e_blocks/point
 
-   // blocks. Thus all row blocks containing an e_block/point occur
 
-   // contiguously. Further, if present, an e_block is always the first
 
-   // parameter block in each row block.  These structural assumptions
 
-   // are common to all Schur complement based solvers in Ceres.
 
-   //
 
-   // For each e_block/point block we identify the set of cameras
 
-   // seeing it. The cross product of this set with itself is the set
 
-   // of non-zero cells contributed by this e_block.
 
-   //
 
-   // The time complexity of this is O(nm^2) where, n is the number of
 
-   // 3d points and m is the maximum number of cameras seeing any
 
-   // point, which for most scenes is a fairly small number.
 
-   while (r < num_row_blocks) {
 
-     int e_block_id = bs.rows[r].cells.front().block_id;
 
-     if (e_block_id >= num_eliminate_blocks) {
 
-       // Skip the rows whose first block is an f_block.
 
-       break;
 
-     }
 
-     set<int> f_blocks;
 
-     for (; r < num_row_blocks; ++r) {
 
-       const CompressedRow& row = bs.rows[r];
 
-       if (row.cells.front().block_id != e_block_id) {
 
-         break;
 
-       }
 
-       // Iterate over the blocks in the row, ignoring the first block
 
-       // since it is the one to be eliminated and adding the rest to
 
-       // the list of f_blocks associated with this e_block.
 
-       for (int c = 1; c < row.cells.size(); ++c) {
 
-         const Cell& cell = row.cells[c];
 
-         const int f_block_id = cell.block_id - num_eliminate_blocks;
 
-         CHECK_GE(f_block_id, 0);
 
-         f_blocks.insert(f_block_id);
 
-       }
 
-     }
 
-     for (set<int>::const_iterator block1 = f_blocks.begin();
 
-          block1 != f_blocks.end();
 
-          ++block1) {
 
-       set<int>::const_iterator block2 = block1;
 
-       ++block2;
 
-       for (; block2 != f_blocks.end(); ++block2) {
 
-         if (IsBlockPairInPreconditioner(*block1, *block2)) {
 
-           block_pairs_.insert(make_pair(*block1, *block2));
 
-         }
 
-       }
 
-     }
 
-   }
 
-   // The remaining rows which do not contain any e_blocks.
 
-   for (; r < num_row_blocks; ++r) {
 
-     const CompressedRow& row = bs.rows[r];
 
-     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
 
-     for (int i = 0; i < row.cells.size(); ++i) {
 
-       const int block1 = row.cells[i].block_id - num_eliminate_blocks;
 
-       for (int j = 0; j < row.cells.size(); ++j) {
 
-         const int block2 = row.cells[j].block_id - num_eliminate_blocks;
 
-         if (block1 <= block2) {
 
-           if (IsBlockPairInPreconditioner(block1, block2)) {
 
-             block_pairs_.insert(make_pair(block1, block2));
 
-           }
 
-         }
 
-       }
 
-     }
 
-   }
 
-   VLOG(1) << "Block pair stats: " << block_pairs_.size();
 
- }
 
- // Initialize the SchurEliminator.
 
- void VisibilityBasedPreconditioner::InitEliminator(
 
-     const CompressedRowBlockStructure& bs) {
 
-   LinearSolver::Options eliminator_options;
 
-   eliminator_options.elimination_groups = options_.elimination_groups;
 
-   eliminator_options.num_threads = options_.num_threads;
 
-   eliminator_options.e_block_size = options_.e_block_size;
 
-   eliminator_options.f_block_size = options_.f_block_size;
 
-   eliminator_options.row_block_size = options_.row_block_size;
 
-   eliminator_options.context = options_.context;
 
-   eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
 
-   const bool kFullRankETE = true;
 
-   eliminator_->Init(
 
-       eliminator_options.elimination_groups[0], kFullRankETE, &bs);
 
- }
 
- // Update the values of the preconditioner matrix and factorize it.
 
- bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
 
-                                                const double* D) {
 
-   const time_t start_time = time(NULL);
 
-   const int num_rows = m_->num_rows();
 
-   CHECK_GT(num_rows, 0);
 
-   // Compute a subset of the entries of the Schur complement.
 
-   eliminator_->Eliminate(
 
-       BlockSparseMatrixData(A), nullptr, D, m_.get(), nullptr);
 
-   // Try factorizing the matrix. For CLUSTER_JACOBI, this should
 
-   // always succeed modulo some numerical/conditioning problems. For
 
-   // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
 
-   // constructed is not positive definite. However, we will go ahead
 
-   // and try factorizing it. If it works, great, otherwise we scale
 
-   // all the cells in the preconditioner corresponding to the edges in
 
-   // the degree-2 forest and that guarantees positive
 
-   // definiteness. The proof of this fact can be found in Lemma 1 in
 
-   // "Visibility Based Preconditioning for Bundle Adjustment".
 
-   //
 
-   // Doing the factorization like this saves us matrix mass when
 
-   // scaling is not needed, which is quite often in our experience.
 
-   LinearSolverTerminationType status = Factorize();
 
-   if (status == LINEAR_SOLVER_FATAL_ERROR) {
 
-     return false;
 
-   }
 
-   // The scaling only affects the tri-diagonal case, since
 
-   // ScaleOffDiagonalBlocks only pays attention to the cells that
 
-   // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
 
-   // case, the preconditioner is guaranteed to be positive
 
-   // semidefinite.
 
-   if (status == LINEAR_SOLVER_FAILURE && options_.type == CLUSTER_TRIDIAGONAL) {
 
-     VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
 
-             << "scaling";
 
-     ScaleOffDiagonalCells();
 
-     status = Factorize();
 
-   }
 
-   VLOG(2) << "Compute time: " << time(NULL) - start_time;
 
-   return (status == LINEAR_SOLVER_SUCCESS);
 
- }
 
- // Consider the preconditioner matrix as meta-block matrix, whose
 
- // blocks correspond to the clusters. Then cluster pairs corresponding
 
- // to edges in the degree-2 forest are off diagonal entries of this
 
- // matrix. Scaling these off-diagonal entries by 1/2 forces this
 
- // matrix to be positive definite.
 
- void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
 
-   for (const auto& block_pair : block_pairs_) {
 
-     const int block1 = block_pair.first;
 
-     const int block2 = block_pair.second;
 
-     if (!IsBlockPairOffDiagonal(block1, block2)) {
 
-       continue;
 
-     }
 
-     int r, c, row_stride, col_stride;
 
-     CellInfo* cell_info =
 
-         m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
 
-     CHECK(cell_info != NULL)
 
-         << "Cell missing for block pair (" << block1 << "," << block2 << ")"
 
-         << " cluster pair (" << cluster_membership_[block1] << " "
 
-         << cluster_membership_[block2] << ")";
 
-     // Ah the magic of tri-diagonal matrices and diagonal
 
-     // dominance. See Lemma 1 in "Visibility Based Preconditioning
 
-     // For Bundle Adjustment".
 
-     MatrixRef m(cell_info->values, row_stride, col_stride);
 
-     m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
 
-   }
 
- }
 
- // Compute the sparse Cholesky factorization of the preconditioner
 
- // matrix.
 
- LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() {
 
-   // Extract the TripletSparseMatrix that is used for actually storing
 
-   // S and convert it into a CompressedRowSparseMatrix.
 
-   const TripletSparseMatrix* tsm =
 
-       down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix();
 
-   std::unique_ptr<CompressedRowSparseMatrix> lhs;
 
-   const CompressedRowSparseMatrix::StorageType storage_type =
 
-       sparse_cholesky_->StorageType();
 
-   if (storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-     lhs.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));
 
-     lhs->set_storage_type(CompressedRowSparseMatrix::UPPER_TRIANGULAR);
 
-   } else {
 
-     lhs.reset(
 
-         CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm));
 
-     lhs->set_storage_type(CompressedRowSparseMatrix::LOWER_TRIANGULAR);
 
-   }
 
-   std::string message;
 
-   return sparse_cholesky_->Factorize(lhs.get(), &message);
 
- }
 
- void VisibilityBasedPreconditioner::RightMultiply(const double* x,
 
-                                                   double* y) const {
 
-   CHECK(x != nullptr);
 
-   CHECK(y != nullptr);
 
-   CHECK(sparse_cholesky_ != nullptr);
 
-   std::string message;
 
-   sparse_cholesky_->Solve(x, y, &message);
 
- }
 
- int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); }
 
- // Classify camera/f_block pairs as in and out of the preconditioner,
 
- // based on whether the cluster pair that they belong to is in the
 
- // preconditioner or not.
 
- bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
 
-     const int block1, const int block2) const {
 
-   int cluster1 = cluster_membership_[block1];
 
-   int cluster2 = cluster_membership_[block2];
 
-   if (cluster1 > cluster2) {
 
-     swap(cluster1, cluster2);
 
-   }
 
-   return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
 
- }
 
- bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
 
-     const int block1, const int block2) const {
 
-   return (cluster_membership_[block1] != cluster_membership_[block2]);
 
- }
 
- // Convert a graph into a list of edges that includes self edges for
 
- // each vertex.
 
- void VisibilityBasedPreconditioner::ForestToClusterPairs(
 
-     const WeightedGraph<int>& forest,
 
-     std::unordered_set<pair<int, int>, pair_hash>* cluster_pairs) const {
 
-   CHECK(cluster_pairs != nullptr);
 
-   cluster_pairs->clear();
 
-   const std::unordered_set<int>& vertices = forest.vertices();
 
-   CHECK_EQ(vertices.size(), num_clusters_);
 
-   // Add all the cluster pairs corresponding to the edges in the
 
-   // forest.
 
-   for (const int cluster1 : vertices) {
 
-     cluster_pairs->insert(make_pair(cluster1, cluster1));
 
-     const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1);
 
-     for (const int cluster2 : neighbors) {
 
-       if (cluster1 < cluster2) {
 
-         cluster_pairs->insert(make_pair(cluster1, cluster2));
 
-       }
 
-     }
 
-   }
 
- }
 
- // The visibility set of a cluster is the union of the visibility sets
 
- // of all its cameras. In other words, the set of points visible to
 
- // any camera in the cluster.
 
- void VisibilityBasedPreconditioner::ComputeClusterVisibility(
 
-     const vector<set<int>>& visibility,
 
-     vector<set<int>>* cluster_visibility) const {
 
-   CHECK(cluster_visibility != nullptr);
 
-   cluster_visibility->resize(0);
 
-   cluster_visibility->resize(num_clusters_);
 
-   for (int i = 0; i < num_blocks_; ++i) {
 
-     const int cluster_id = cluster_membership_[i];
 
-     (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
 
-                                              visibility[i].end());
 
-   }
 
- }
 
- // Construct a graph whose vertices are the clusters, and the edge
 
- // weights are the number of 3D points visible to cameras in both the
 
- // vertices.
 
- WeightedGraph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
 
-     const vector<set<int>>& cluster_visibility) const {
 
-   WeightedGraph<int>* cluster_graph = new WeightedGraph<int>;
 
-   for (int i = 0; i < num_clusters_; ++i) {
 
-     cluster_graph->AddVertex(i);
 
-   }
 
-   for (int i = 0; i < num_clusters_; ++i) {
 
-     const set<int>& cluster_i = cluster_visibility[i];
 
-     for (int j = i + 1; j < num_clusters_; ++j) {
 
-       vector<int> intersection;
 
-       const set<int>& cluster_j = cluster_visibility[j];
 
-       set_intersection(cluster_i.begin(),
 
-                        cluster_i.end(),
 
-                        cluster_j.begin(),
 
-                        cluster_j.end(),
 
-                        back_inserter(intersection));
 
-       if (intersection.size() > 0) {
 
-         // Clusters interact strongly when they share a large number
 
-         // of 3D points. The degree-2 maximum spanning forest
 
-         // algorithm, iterates on the edges in decreasing order of
 
-         // their weight, which is the number of points shared by the
 
-         // two cameras that it connects.
 
-         cluster_graph->AddEdge(i, j, intersection.size());
 
-       }
 
-     }
 
-   }
 
-   return cluster_graph;
 
- }
 
- // Canonical views clustering returns a std::unordered_map from vertices to
 
- // cluster ids. Convert this into a flat array for quick lookup. It is
 
- // possible that some of the vertices may not be associated with any
 
- // cluster. In that case, randomly assign them to one of the clusters.
 
- //
 
- // The cluster ids can be non-contiguous integers. So as we flatten
 
- // the membership_map, we also map the cluster ids to a contiguous set
 
- // of integers so that the cluster ids are in [0, num_clusters_).
 
- void VisibilityBasedPreconditioner::FlattenMembershipMap(
 
-     const std::unordered_map<int, int>& membership_map,
 
-     vector<int>* membership_vector) const {
 
-   CHECK(membership_vector != nullptr);
 
-   membership_vector->resize(0);
 
-   membership_vector->resize(num_blocks_, -1);
 
-   std::unordered_map<int, int> cluster_id_to_index;
 
-   // Iterate over the cluster membership map and update the
 
-   // cluster_membership_ vector assigning arbitrary cluster ids to
 
-   // the few cameras that have not been clustered.
 
-   for (const auto& m : membership_map) {
 
-     const int camera_id = m.first;
 
-     int cluster_id = m.second;
 
-     // If the view was not clustered, randomly assign it to one of the
 
-     // clusters. This preserves the mathematical correctness of the
 
-     // preconditioner. If there are too many views which are not
 
-     // clustered, it may lead to some quality degradation though.
 
-     //
 
-     // TODO(sameeragarwal): Check if a large number of views have not
 
-     // been clustered and deal with it?
 
-     if (cluster_id == -1) {
 
-       cluster_id = camera_id % num_clusters_;
 
-     }
 
-     const int index = FindWithDefault(
 
-         cluster_id_to_index, cluster_id, cluster_id_to_index.size());
 
-     if (index == cluster_id_to_index.size()) {
 
-       cluster_id_to_index[cluster_id] = index;
 
-     }
 
-     CHECK_LT(index, num_clusters_);
 
-     membership_vector->at(camera_id) = index;
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |