| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_SPARSE_CHOLESKY_H_#define CERES_INTERNAL_SPARSE_CHOLESKY_H_// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#include <memory>#include "ceres/linear_solver.h"#include "glog/logging.h"namespace ceres {namespace internal {// An interface that abstracts away the internal details of various// sparse linear algebra libraries and offers a simple API for solving// symmetric positive definite linear systems using a sparse Cholesky// factorization.//// Instances of SparseCholesky are expected to cache the symbolic// factorization of the linear system. They do this on the first call// to Factorize or FactorAndSolve. Subsequent calls to Factorize and// FactorAndSolve are expected to have the same sparsity structure.//// Example usage:////  std::unique_ptr<SparseCholesky>//  sparse_cholesky(SparseCholesky::Create(SUITE_SPARSE, AMD));////  CompressedRowSparseMatrix lhs = ...;//  std::string message;//  CHECK_EQ(sparse_cholesky->Factorize(&lhs, &message), LINEAR_SOLVER_SUCCESS);//  Vector rhs = ...;//  Vector solution = ...;//  CHECK_EQ(sparse_cholesky->Solve(rhs.data(), solution.data(), &message),//           LINEAR_SOLVER_SUCCESS);class SparseCholesky { public:  static std::unique_ptr<SparseCholesky> Create(      const LinearSolver::Options& options);  virtual ~SparseCholesky();  // Due to the symmetry of the linear system, sparse linear algebra  // libraries only use one half of the input matrix. Whether it is  // the upper or the lower triangular part of the matrix depends on  // the library and the re-ordering strategy being used. This  // function tells the user the storage type expected of the input  // matrix for the sparse linear algebra library and reordering  // strategy used.  virtual CompressedRowSparseMatrix::StorageType StorageType() const = 0;  // Computes the numeric factorization of the given matrix.  If this  // is the first call to Factorize, first the symbolic factorization  // will be computed and cached and the numeric factorization will be  // computed based on that.  //  // Subsequent calls to Factorize will use that symbolic  // factorization assuming that the sparsity of the matrix has  // remained constant.  virtual LinearSolverTerminationType Factorize(      CompressedRowSparseMatrix* lhs, std::string* message) = 0;  // Computes the solution to the equation  //  // lhs * solution = rhs  virtual LinearSolverTerminationType Solve(const double* rhs,                                            double* solution,                                            std::string* message) = 0;  // Convenience method which combines a call to Factorize and  // Solve. Solve is only called if Factorize returns  // LINEAR_SOLVER_SUCCESS.  virtual LinearSolverTerminationType FactorAndSolve(      CompressedRowSparseMatrix* lhs,      const double* rhs,      double* solution,      std::string* message);};class IterativeRefiner;// Computes an initial solution using the given instance of// SparseCholesky, and then refines it using the IterativeRefiner.class RefinedSparseCholesky : public SparseCholesky { public:  RefinedSparseCholesky(std::unique_ptr<SparseCholesky> sparse_cholesky,                        std::unique_ptr<IterativeRefiner> iterative_refiner);  virtual ~RefinedSparseCholesky();  virtual CompressedRowSparseMatrix::StorageType StorageType() const;  virtual LinearSolverTerminationType Factorize(      CompressedRowSparseMatrix* lhs, std::string* message);  virtual LinearSolverTerminationType Solve(const double* rhs,                                            double* solution,                                            std::string* message); private:  std::unique_ptr<SparseCholesky> sparse_cholesky_;  std::unique_ptr<IterativeRefiner> iterative_refiner_;  CompressedRowSparseMatrix* lhs_ = nullptr;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_SPARSE_CHOLESKY_H_
 |