| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// TODO(sameeragarwal): row_block_counter can perhaps be replaced by// Chunk::start ?#ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_#define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_// Eigen has an internal threshold switching between different matrix// multiplication algorithms. In particular for matrices larger than// EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly// matrix matrix product algorithm that has a higher setup cost. For// matrix sizes close to this threshold, especially when the matrices// are thin and long, the default choice may not be optimal. This is// the case for us, as the default choice causes a 30% performance// regression when we moved from Eigen2 to Eigen3.#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#include <algorithm>#include <map>#include "Eigen/Dense"#include "ceres/block_random_access_matrix.h"#include "ceres/block_sparse_matrix.h"#include "ceres/block_structure.h"#include "ceres/internal/eigen.h"#include "ceres/internal/fixed_array.h"#include "ceres/invert_psd_matrix.h"#include "ceres/map_util.h"#include "ceres/parallel_for.h"#include "ceres/schur_eliminator.h"#include "ceres/scoped_thread_token.h"#include "ceres/small_blas.h"#include "ceres/stl_util.h"#include "ceres/thread_token_provider.h"#include "glog/logging.h"namespace ceres {namespace internal {template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {  STLDeleteElements(&rhs_locks_);}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Init(    int num_eliminate_blocks,    bool assume_full_rank_ete,    const CompressedRowBlockStructure* bs) {  CHECK_GT(num_eliminate_blocks, 0)      << "SchurComplementSolver cannot be initialized with "      << "num_eliminate_blocks = 0.";  num_eliminate_blocks_ = num_eliminate_blocks;  assume_full_rank_ete_ = assume_full_rank_ete;  const int num_col_blocks = bs->cols.size();  const int num_row_blocks = bs->rows.size();  buffer_size_ = 1;  chunks_.clear();  lhs_row_layout_.clear();  int lhs_num_rows = 0;  // Add a map object for each block in the reduced linear system  // and build the row/column block structure of the reduced linear  // system.  lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);  for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {    lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;    lhs_num_rows += bs->cols[i].size;  }  // TODO(sameeragarwal): Now that we may have subset block structure,  // we need to make sure that we account for the fact that somep  // point blocks only have a "diagonal" row and nothing more.  //  // This likely requires a slightly different algorithm, which works  // off of the number of elimination blocks.  int r = 0;  // Iterate over the row blocks of A, and detect the chunks. The  // matrix should already have been ordered so that all rows  // containing the same y block are vertically contiguous. Along  // the way also compute the amount of space each chunk will need  // to perform the elimination.  while (r < num_row_blocks) {    const int chunk_block_id = bs->rows[r].cells.front().block_id;    if (chunk_block_id >= num_eliminate_blocks_) {      break;    }    chunks_.push_back(Chunk());    Chunk& chunk = chunks_.back();    chunk.size = 0;    chunk.start = r;    int buffer_size = 0;    const int e_block_size = bs->cols[chunk_block_id].size;    // Add to the chunk until the first block in the row is    // different than the one in the first row for the chunk.    while (r + chunk.size < num_row_blocks) {      const CompressedRow& row = bs->rows[r + chunk.size];      if (row.cells.front().block_id != chunk_block_id) {        break;      }      // Iterate over the blocks in the row, ignoring the first      // block since it is the one to be eliminated.      for (int c = 1; c < row.cells.size(); ++c) {        const Cell& cell = row.cells[c];        if (InsertIfNotPresent(                &(chunk.buffer_layout), cell.block_id, buffer_size)) {          buffer_size += e_block_size * bs->cols[cell.block_id].size;        }      }      buffer_size_ = std::max(buffer_size, buffer_size_);      ++chunk.size;    }    CHECK_GT(chunk.size, 0); // This check will need to be resolved.    r += chunk.size;  }  const Chunk& chunk = chunks_.back();  uneliminated_row_begins_ = chunk.start + chunk.size;  buffer_.reset(new double[buffer_size_ * num_threads_]);  // chunk_outer_product_buffer_ only needs to store e_block_size *  // f_block_size, which is always less than buffer_size_, so we just  // allocate buffer_size_ per thread.  chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]);  STLDeleteElements(&rhs_locks_);  rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);  for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {    rhs_locks_[i] = new std::mutex;  }}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Eliminate(const BlockSparseMatrixData& A,          const double* b,          const double* D,          BlockRandomAccessMatrix* lhs,          double* rhs) {  if (lhs->num_rows() > 0) {    lhs->SetZero();    if (rhs) {      VectorRef(rhs, lhs->num_rows()).setZero();    }  }  const CompressedRowBlockStructure* bs = A.block_structure();  const int num_col_blocks = bs->cols.size();  // Add the diagonal to the schur complement.  if (D != NULL) {    ParallelFor(        context_,        num_eliminate_blocks_,        num_col_blocks,        num_threads_,        [&](int i) {          const int block_id = i - num_eliminate_blocks_;          int r, c, row_stride, col_stride;          CellInfo* cell_info = lhs->GetCell(block_id, block_id, &r, &c,                                             &row_stride, &col_stride);          if (cell_info != NULL) {            const int block_size = bs->cols[i].size;            typename EigenTypes<Eigen::Dynamic>::ConstVectorRef diag(                D + bs->cols[i].position, block_size);            std::lock_guard<std::mutex> l(cell_info->m);            MatrixRef m(cell_info->values, row_stride, col_stride);            m.block(r, c, block_size, block_size).diagonal() +=                diag.array().square().matrix();          }        });  }  // Eliminate y blocks one chunk at a time.  For each chunk, compute  // the entries of the normal equations and the gradient vector block  // corresponding to the y block and then apply Gaussian elimination  // to them. The matrix ete stores the normal matrix corresponding to  // the block being eliminated and array buffer_ contains the  // non-zero blocks in the row corresponding to this y block in the  // normal equations. This computation is done in  // ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian  // elimination to the rhs of the normal equations, updating the rhs  // of the reduced linear system by modifying rhs blocks for all the  // z blocks that share a row block/residual term with the y  // block. EliminateRowOuterProduct does the corresponding operation  // for the lhs of the reduced linear system.  ParallelFor(      context_,      0,      int(chunks_.size()),      num_threads_,      [&](int thread_id, int i) {        double* buffer = buffer_.get() + thread_id * buffer_size_;        const Chunk& chunk = chunks_[i];        const int e_block_id = bs->rows[chunk.start].cells.front().block_id;        const int e_block_size = bs->cols[e_block_id].size;        VectorRef(buffer, buffer_size_).setZero();        typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix            ete(e_block_size, e_block_size);        if (D != NULL) {          const typename EigenTypes<kEBlockSize>::ConstVectorRef              diag(D + bs->cols[e_block_id].position, e_block_size);          ete = diag.array().square().matrix().asDiagonal();        } else {          ete.setZero();        }        FixedArray<double, 8> g(e_block_size);        typename EigenTypes<kEBlockSize>::VectorRef gref(g.data(),                                                         e_block_size);        gref.setZero();        // We are going to be computing        //        //   S += F'F - F'E(E'E)^{-1}E'F        //        // for each Chunk. The computation is broken down into a number of        // function calls as below.        // Compute the outer product of the e_blocks with themselves (ete        // = E'E). Compute the product of the e_blocks with the        // corresponding f_blocks (buffer = E'F), the gradient of the terms        // in this chunk (g) and add the outer product of the f_blocks to        // Schur complement (S += F'F).        ChunkDiagonalBlockAndGradient(            chunk, A, b, chunk.start, &ete, g.data(), buffer, lhs);        // Normally one wouldn't compute the inverse explicitly, but        // e_block_size will typically be a small number like 3, in        // which case its much faster to compute the inverse once and        // use it to multiply other matrices/vectors instead of doing a        // Solve call over and over again.        typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =            InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete);        // For the current chunk compute and update the rhs of the reduced        // linear system.        //        //   rhs = F'b - F'E(E'E)^(-1) E'b        if (rhs) {          FixedArray<double, 8> inverse_ete_g(e_block_size);          MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(              inverse_ete.data(),              e_block_size,              e_block_size,              g.data(),              inverse_ete_g.data());          UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.data(), rhs);        }        // S -= F'E(E'E)^{-1}E'F        ChunkOuterProduct(        thread_id, bs, inverse_ete, buffer, chunk.buffer_layout, lhs);      });  // For rows with no e_blocks, the schur complement update reduces to  // S += F'F.  NoEBlockRowsUpdate(A, b,  uneliminated_row_begins_, lhs, rhs);}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::BackSubstitute(const BlockSparseMatrixData& A,               const double* b,               const double* D,               const double* z,               double* y) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  ParallelFor(      context_,      0,      int(chunks_.size()),      num_threads_,      [&](int i) {    const Chunk& chunk = chunks_[i];    const int e_block_id = bs->rows[chunk.start].cells.front().block_id;    const int e_block_size = bs->cols[e_block_id].size;    double* y_ptr = y + bs->cols[e_block_id].position;    typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix        ete(e_block_size, e_block_size);    if (D != NULL) {      const typename EigenTypes<kEBlockSize>::ConstVectorRef          diag(D + bs->cols[e_block_id].position, e_block_size);      ete = diag.array().square().matrix().asDiagonal();    } else {      ete.setZero();    }    for (int j = 0; j < chunk.size; ++j) {      const CompressedRow& row = bs->rows[chunk.start + j];      const Cell& e_cell = row.cells.front();      DCHECK_EQ(e_block_id, e_cell.block_id);      FixedArray<double, 8> sj(row.block.size);      typename EigenTypes<kRowBlockSize>::VectorRef(sj.data(), row.block.size) =          typename EigenTypes<kRowBlockSize>::ConstVectorRef(              b + bs->rows[chunk.start + j].block.position, row.block.size);      for (int c = 1; c < row.cells.size(); ++c) {        const int f_block_id = row.cells[c].block_id;        const int f_block_size = bs->cols[f_block_id].size;        const int r_block = f_block_id - num_eliminate_blocks_;        MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(            values + row.cells[c].position, row.block.size, f_block_size,            z + lhs_row_layout_[r_block],            sj.data());      }      MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(          values + e_cell.position, row.block.size, e_block_size,          sj.data(),          y_ptr);      MatrixTransposeMatrixMultiply          <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(          values + e_cell.position, row.block.size, e_block_size,          values + e_cell.position, row.block.size, e_block_size,          ete.data(), 0, 0, e_block_size, e_block_size);    }    y_block =        InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete) * y_block;  });}// Update the rhs of the reduced linear system. Compute////   F'b - F'E(E'E)^(-1) E'btemplate <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::UpdateRhs(const Chunk& chunk,          const BlockSparseMatrixData& A,          const double* b,          int row_block_counter,          const double* inverse_ete_g,          double* rhs) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  const int e_block_id = bs->rows[chunk.start].cells.front().block_id;  const int e_block_size = bs->cols[e_block_id].size;  int b_pos = bs->rows[row_block_counter].block.position;  for (int j = 0; j < chunk.size; ++j) {    const CompressedRow& row = bs->rows[row_block_counter + j];    const Cell& e_cell = row.cells.front();    typename EigenTypes<kRowBlockSize>::Vector sj =        typename EigenTypes<kRowBlockSize>::ConstVectorRef        (b + b_pos, row.block.size);    MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(        values + e_cell.position, row.block.size, e_block_size,        inverse_ete_g, sj.data());    for (int c = 1; c < row.cells.size(); ++c) {      const int block_id = row.cells[c].block_id;      const int block_size = bs->cols[block_id].size;      const int block = block_id - num_eliminate_blocks_;      std::lock_guard<std::mutex> l(*rhs_locks_[block]);      MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(          values + row.cells[c].position,          row.block.size, block_size,          sj.data(), rhs + lhs_row_layout_[block]);    }    b_pos += row.block.size;  }}// Given a Chunk - set of rows with the same e_block, e.g. in the// following Chunk with two rows.////                E                   F//      [ y11   0   0   0 |  z11     0    0   0    z51]//      [ y12   0   0   0 |  z12   z22    0   0      0]//// this function computes twp matrices. The diagonal block matrix////   ete = y11 * y11' + y12 * y12'//// and the off diagonal blocks in the Guass Newton Hessian.////   buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]//// which are zero compressed versions of the block sparse matrices E'E// and E'F.//// and the gradient of the e_block, E'b.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::ChunkDiagonalBlockAndGradient(    const Chunk& chunk,    const BlockSparseMatrixData& A,    const double* b,    int row_block_counter,    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,    double* g,    double* buffer,    BlockRandomAccessMatrix* lhs) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  int b_pos = bs->rows[row_block_counter].block.position;  const int e_block_size = ete->rows();  // Iterate over the rows in this chunk, for each row, compute the  // contribution of its F blocks to the Schur complement, the  // contribution of its E block to the matrix EE' (ete), and the  // corresponding block in the gradient vector.  for (int j = 0; j < chunk.size; ++j) {    const CompressedRow& row = bs->rows[row_block_counter + j];    if (row.cells.size() > 1) {      EBlockRowOuterProduct(A, row_block_counter + j, lhs);    }    // Extract the e_block, ETE += E_i' E_i    const Cell& e_cell = row.cells.front();    MatrixTransposeMatrixMultiply        <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(            values + e_cell.position, row.block.size, e_block_size,            values + e_cell.position, row.block.size, e_block_size,            ete->data(), 0, 0, e_block_size, e_block_size);    if (b) {      // g += E_i' b_i      MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(          values + e_cell.position, row.block.size, e_block_size,          b + b_pos,          g);    }    // buffer = E'F. This computation is done by iterating over the    // f_blocks for each row in the chunk.    for (int c = 1; c < row.cells.size(); ++c) {      const int f_block_id = row.cells[c].block_id;      const int f_block_size = bs->cols[f_block_id].size;      double* buffer_ptr =          buffer +  FindOrDie(chunk.buffer_layout, f_block_id);      MatrixTransposeMatrixMultiply          <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(          values + e_cell.position, row.block.size, e_block_size,          values + row.cells[c].position, row.block.size, f_block_size,          buffer_ptr, 0, 0, e_block_size, f_block_size);    }    b_pos += row.block.size;  }}// Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the// Schur complement matrix, i.e////  S -= F'E(E'E)^{-1}E'F.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::ChunkOuterProduct(int thread_id,                  const CompressedRowBlockStructure* bs,                  const Matrix& inverse_ete,                  const double* buffer,                  const BufferLayoutType& buffer_layout,                  BlockRandomAccessMatrix* lhs) {  // This is the most computationally expensive part of this  // code. Profiling experiments reveal that the bottleneck is not the  // computation of the right-hand matrix product, but memory  // references to the left hand side.  const int e_block_size = inverse_ete.rows();  BufferLayoutType::const_iterator it1 = buffer_layout.begin();  double* b1_transpose_inverse_ete =      chunk_outer_product_buffer_.get() + thread_id * buffer_size_;  // S(i,j) -= bi' * ete^{-1} b_j  for (; it1 != buffer_layout.end(); ++it1) {    const int block1 = it1->first - num_eliminate_blocks_;    const int block1_size = bs->cols[it1->first].size;    MatrixTransposeMatrixMultiply        <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(        buffer + it1->second, e_block_size, block1_size,        inverse_ete.data(), e_block_size, e_block_size,        b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);    BufferLayoutType::const_iterator it2 = it1;    for (; it2 != buffer_layout.end(); ++it2) {      const int block2 = it2->first - num_eliminate_blocks_;      int r, c, row_stride, col_stride;      CellInfo* cell_info = lhs->GetCell(block1, block2,                                         &r, &c,                                         &row_stride, &col_stride);      if (cell_info != NULL) {        const int block2_size = bs->cols[it2->first].size;        std::lock_guard<std::mutex> l(cell_info->m);        MatrixMatrixMultiply            <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(                b1_transpose_inverse_ete, block1_size, e_block_size,                buffer  + it2->second, e_block_size, block2_size,                cell_info->values, r, c, row_stride, col_stride);      }    }  }}// For rows with no e_blocks, the schur complement update reduces to S// += F'F. This function iterates over the rows of A with no e_block,// and calls NoEBlockRowOuterProduct on each row.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::NoEBlockRowsUpdate(const BlockSparseMatrixData& A,                   const double* b,                   int row_block_counter,                   BlockRandomAccessMatrix* lhs,                   double* rhs) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  for (; row_block_counter < bs->rows.size(); ++row_block_counter) {    NoEBlockRowOuterProduct(A, row_block_counter, lhs);    if (!rhs) {      continue;    }    const CompressedRow& row = bs->rows[row_block_counter];    for (int c = 0; c < row.cells.size(); ++c) {      const int block_id = row.cells[c].block_id;      const int block_size = bs->cols[block_id].size;      const int block = block_id - num_eliminate_blocks_;      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          values + row.cells[c].position, row.block.size, block_size,          b + row.block.position,          rhs + lhs_row_layout_[block]);    }  }}// A row r of A, which has no e_blocks gets added to the Schur// Complement as S += r r'. This function is responsible for computing// the contribution of a single row r to the Schur complement. It is// very similar in structure to EBlockRowOuterProduct except for// one difference. It does not use any of the template// parameters. This is because the algorithm used for detecting the// static structure of the matrix A only pays attention to rows with// e_blocks. This is because rows without e_blocks are rare and// typically arise from regularization terms in the original// optimization problem, and have a very different structure than the// rows with e_blocks. Including them in the static structure// detection will lead to most template parameters being set to// dynamic. Since the number of rows without e_blocks is small, the// lack of templating is not an issue.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::NoEBlockRowOuterProduct(const BlockSparseMatrixData& A,                        int row_block_index,                        BlockRandomAccessMatrix* lhs) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  const CompressedRow& row = bs->rows[row_block_index];  for (int i = 0; i < row.cells.size(); ++i) {    const int block1 = row.cells[i].block_id - num_eliminate_blocks_;    DCHECK_GE(block1, 0);    const int block1_size = bs->cols[row.cells[i].block_id].size;    int r, c, row_stride, col_stride;    CellInfo* cell_info = lhs->GetCell(block1, block1,                                       &r, &c,                                       &row_stride, &col_stride);    if (cell_info != NULL) {      std::lock_guard<std::mutex> l(cell_info->m);      // This multiply currently ignores the fact that this is a      // symmetric outer product.      MatrixTransposeMatrixMultiply          <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(              values + row.cells[i].position, row.block.size, block1_size,              values + row.cells[i].position, row.block.size, block1_size,              cell_info->values, r, c, row_stride, col_stride);    }    for (int j = i + 1; j < row.cells.size(); ++j) {      const int block2 = row.cells[j].block_id - num_eliminate_blocks_;      DCHECK_GE(block2, 0);      DCHECK_LT(block1, block2);      int r, c, row_stride, col_stride;      CellInfo* cell_info = lhs->GetCell(block1, block2,                                         &r, &c,                                         &row_stride, &col_stride);      if (cell_info != NULL) {        const int block2_size = bs->cols[row.cells[j].block_id].size;        std::lock_guard<std::mutex> l(cell_info->m);        MatrixTransposeMatrixMultiply            <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(                values + row.cells[i].position, row.block.size, block1_size,                values + row.cells[j].position, row.block.size, block2_size,                cell_info->values, r, c, row_stride, col_stride);      }    }  }}// For a row with an e_block, compute the contribution S += F'F. This// function has the same structure as NoEBlockRowOuterProduct, except// that this function uses the template parameters.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidSchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::EBlockRowOuterProduct(const BlockSparseMatrixData& A,                      int row_block_index,                      BlockRandomAccessMatrix* lhs) {  const CompressedRowBlockStructure* bs = A.block_structure();  const double* values = A.values();  const CompressedRow& row = bs->rows[row_block_index];  for (int i = 1; i < row.cells.size(); ++i) {    const int block1 = row.cells[i].block_id - num_eliminate_blocks_;    DCHECK_GE(block1, 0);    const int block1_size = bs->cols[row.cells[i].block_id].size;    int r, c, row_stride, col_stride;    CellInfo* cell_info = lhs->GetCell(block1, block1,                                       &r, &c,                                       &row_stride, &col_stride);    if (cell_info != NULL) {      std::lock_guard<std::mutex> l(cell_info->m);      // block += b1.transpose() * b1;      MatrixTransposeMatrixMultiply          <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(          values + row.cells[i].position, row.block.size, block1_size,          values + row.cells[i].position, row.block.size, block1_size,          cell_info->values, r, c, row_stride, col_stride);    }    for (int j = i + 1; j < row.cells.size(); ++j) {      const int block2 = row.cells[j].block_id - num_eliminate_blocks_;      DCHECK_GE(block2, 0);      DCHECK_LT(block1, block2);      const int block2_size = bs->cols[row.cells[j].block_id].size;      int r, c, row_stride, col_stride;      CellInfo* cell_info = lhs->GetCell(block1, block2,                                         &r, &c,                                         &row_stride, &col_stride);      if (cell_info != NULL) {        // block += b1.transpose() * b2;        std::lock_guard<std::mutex> l(cell_info->m);        MatrixTransposeMatrixMultiply            <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(                values + row.cells[i].position, row.block.size, block1_size,                values + row.cells[j].position, row.block.size, block2_size,                cell_info->values, r, c, row_stride, col_stride);      }    }  }}}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
 |