| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)#include "ceres/residual_block.h"#include <cstdint>#include "gtest/gtest.h"#include "ceres/parameter_block.h"#include "ceres/sized_cost_function.h"#include "ceres/internal/eigen.h"#include "ceres/local_parameterization.h"namespace ceres {namespace internal {using std::vector;// Trivial cost function that accepts three arguments.class TernaryCostFunction: public CostFunction { public:  TernaryCostFunction(int num_residuals,                      int32_t parameter_block1_size,                      int32_t parameter_block2_size,                      int32_t parameter_block3_size) {    set_num_residuals(num_residuals);    mutable_parameter_block_sizes()->push_back(parameter_block1_size);    mutable_parameter_block_sizes()->push_back(parameter_block2_size);    mutable_parameter_block_sizes()->push_back(parameter_block3_size);  }  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const final {    for (int i = 0; i < num_residuals(); ++i) {      residuals[i] = i;    }    if (jacobians) {      for (int k = 0; k < 3; ++k) {        if (jacobians[k] != NULL) {          MatrixRef jacobian(jacobians[k],                             num_residuals(),                             parameter_block_sizes()[k]);          jacobian.setConstant(k);        }      }    }    return true;  }};TEST(ResidualBlock, EvaluteWithNoLossFunctionOrLocalParameterizations) {  double scratch[64];  // Prepare the parameter blocks.  double values_x[2];  ParameterBlock x(values_x, 2, -1);  double values_y[3];  ParameterBlock y(values_y, 3, -1);  double values_z[4];  ParameterBlock z(values_z, 4, -1);  vector<ParameterBlock*> parameters;  parameters.push_back(&x);  parameters.push_back(&y);  parameters.push_back(&z);  TernaryCostFunction cost_function(3, 2, 3, 4);  // Create the object under tests.  ResidualBlock residual_block(&cost_function, NULL, parameters, -1);  // Verify getters.  EXPECT_EQ(&cost_function, residual_block.cost_function());  EXPECT_EQ(NULL, residual_block.loss_function());  EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);  EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);  EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);  EXPECT_EQ(3, residual_block.NumScratchDoublesForEvaluate());  // Verify cost-only evaluation.  double cost;  residual_block.Evaluate(true, &cost, NULL, NULL, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  // Verify cost and residual evaluation.  double residuals[3];  residual_block.Evaluate(true, &cost, residuals, NULL, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  // Verify cost, residual, and jacobian evaluation.  cost = 0.0;  VectorRef(residuals, 3).setConstant(0.0);  Matrix jacobian_rx(3, 2);  Matrix jacobian_ry(3, 3);  Matrix jacobian_rz(3, 4);  jacobian_rx.setConstant(-1.0);  jacobian_ry.setConstant(-1.0);  jacobian_rz.setConstant(-1.0);  double *jacobian_ptrs[3] = {    jacobian_rx.data(),    jacobian_ry.data(),    jacobian_rz.data()  };  residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx;  EXPECT_TRUE((jacobian_ry.array() == 1.0).all()) << "\n" << jacobian_ry;  EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz;  // Verify cost, residual, and partial jacobian evaluation.  cost = 0.0;  VectorRef(residuals, 3).setConstant(0.0);  jacobian_rx.setConstant(-1.0);  jacobian_ry.setConstant(-1.0);  jacobian_rz.setConstant(-1.0);  jacobian_ptrs[1] = NULL;  // Don't compute the jacobian for y.  residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  EXPECT_TRUE((jacobian_rx.array() ==  0.0).all()) << "\n" << jacobian_rx;  EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;  EXPECT_TRUE((jacobian_rz.array() ==  2.0).all()) << "\n" << jacobian_rz;}// Trivial cost function that accepts three arguments.class LocallyParameterizedCostFunction: public SizedCostFunction<3, 2, 3, 4> { public:  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const final {    for (int i = 0; i < num_residuals(); ++i) {      residuals[i] = i;    }    if (jacobians) {      for (int k = 0; k < 3; ++k) {        // The jacobians here are full sized, but they are transformed in the        // evaluator into the "local" jacobian. In the tests, the "subset        // constant" parameterization is used, which should pick out columns        // from these jacobians. Put values in the jacobian that make this        // obvious; in particular, make the jacobians like this:        //        //   0 1 2 3 4 ...        //   0 1 2 3 4 ...        //   0 1 2 3 4 ...        //        if (jacobians[k] != NULL) {          MatrixRef jacobian(jacobians[k],                             num_residuals(),                             parameter_block_sizes()[k]);          for (int j = 0; j < k + 2; ++j) {            jacobian.col(j).setConstant(j);          }        }      }    }    return true;  }};TEST(ResidualBlock, EvaluteWithLocalParameterizations) {  double scratch[64];  // Prepare the parameter blocks.  double values_x[2];  ParameterBlock x(values_x, 2, -1);  double values_y[3];  ParameterBlock y(values_y, 3, -1);  double values_z[4];  ParameterBlock z(values_z, 4, -1);  vector<ParameterBlock*> parameters;  parameters.push_back(&x);  parameters.push_back(&y);  parameters.push_back(&z);  // Make x have the first component fixed.  vector<int> x_fixed;  x_fixed.push_back(0);  SubsetParameterization x_parameterization(2, x_fixed);  x.SetParameterization(&x_parameterization);  // Make z have the last and last component fixed.  vector<int> z_fixed;  z_fixed.push_back(2);  SubsetParameterization z_parameterization(4, z_fixed);  z.SetParameterization(&z_parameterization);  LocallyParameterizedCostFunction cost_function;  // Create the object under tests.  ResidualBlock residual_block(&cost_function, NULL, parameters, -1);  // Verify getters.  EXPECT_EQ(&cost_function, residual_block.cost_function());  EXPECT_EQ(NULL, residual_block.loss_function());  EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);  EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);  EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);  EXPECT_EQ(3*(2 + 4) + 3, residual_block.NumScratchDoublesForEvaluate());  // Verify cost-only evaluation.  double cost;  residual_block.Evaluate(true, &cost, NULL, NULL, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  // Verify cost and residual evaluation.  double residuals[3];  residual_block.Evaluate(true, &cost, residuals, NULL, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  // Verify cost, residual, and jacobian evaluation.  cost = 0.0;  VectorRef(residuals, 3).setConstant(0.0);  Matrix jacobian_rx(3, 1);  // Since the first element is fixed.  Matrix jacobian_ry(3, 3);  Matrix jacobian_rz(3, 3);  // Since the third element is fixed.  jacobian_rx.setConstant(-1.0);  jacobian_ry.setConstant(-1.0);  jacobian_rz.setConstant(-1.0);  double *jacobian_ptrs[3] = {    jacobian_rx.data(),    jacobian_ry.data(),    jacobian_rz.data()  };  residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  Matrix expected_jacobian_rx(3, 1);  expected_jacobian_rx << 1.0, 1.0, 1.0;  Matrix expected_jacobian_ry(3, 3);  expected_jacobian_ry << 0.0, 1.0, 2.0,                          0.0, 1.0, 2.0,                          0.0, 1.0, 2.0;  Matrix expected_jacobian_rz(3, 3);  expected_jacobian_rz << 0.0, 1.0, /* 2.0, */ 3.0,  // 3rd parameter constant.                          0.0, 1.0, /* 2.0, */ 3.0,                          0.0, 1.0, /* 2.0, */ 3.0;  EXPECT_EQ(expected_jacobian_rx, jacobian_rx)      << "\nExpected:\n" << expected_jacobian_rx      << "\nActual:\n"   << jacobian_rx;  EXPECT_EQ(expected_jacobian_ry, jacobian_ry)      << "\nExpected:\n" << expected_jacobian_ry      << "\nActual:\n"   << jacobian_ry;  EXPECT_EQ(expected_jacobian_rz, jacobian_rz)      << "\nExpected:\n " << expected_jacobian_rz      << "\nActual:\n"   << jacobian_rz;  // Verify cost, residual, and partial jacobian evaluation.  cost = 0.0;  VectorRef(residuals, 3).setConstant(0.0);  jacobian_rx.setConstant(-1.0);  jacobian_ry.setConstant(-1.0);  jacobian_rz.setConstant(-1.0);  jacobian_ptrs[1] = NULL;  // Don't compute the jacobian for y.  residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);  EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);  EXPECT_EQ(0.0, residuals[0]);  EXPECT_EQ(1.0, residuals[1]);  EXPECT_EQ(2.0, residuals[2]);  EXPECT_EQ(expected_jacobian_rx, jacobian_rx);  EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;  EXPECT_EQ(expected_jacobian_rz, jacobian_rz);}}  // namespace internal}  // namespace ceres
 |