| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)#ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_#define CERES_INTERNAL_PARAMETER_BLOCK_H_#include <algorithm>#include <cstdint>#include <cstdlib>#include <limits>#include <memory>#include <string>#include <unordered_set>#include "ceres/array_utils.h"#include "ceres/internal/eigen.h"#include "ceres/internal/port.h"#include "ceres/local_parameterization.h"#include "ceres/stringprintf.h"#include "glog/logging.h"namespace ceres {namespace internal {class ProblemImpl;class ResidualBlock;// The parameter block encodes the location of the user's original value, and// also the "current state" of the parameter. The evaluator uses whatever is in// the current state of the parameter when evaluating. This is inlined since the// methods are performance sensitive.//// The class is not thread-safe, unless only const methods are called. The// parameter block may also hold a pointer to a local parameterization; the// parameter block does not take ownership of this pointer, so the user is// responsible for the proper disposal of the local parameterization.class ParameterBlock { public:  typedef std::unordered_set<ResidualBlock*> ResidualBlockSet;  // Create a parameter block with the user state, size, and index specified.  // The size is the size of the parameter block and the index is the position  // of the parameter block inside a Program (if any).  ParameterBlock(double* user_state, int size, int index)      : user_state_(user_state),        size_(size),        state_(user_state),        index_(index) {}  ParameterBlock(double* user_state,                 int size,                 int index,                 LocalParameterization* local_parameterization)      : user_state_(user_state),        size_(size),        state_(user_state),        index_(index) {    if (local_parameterization != nullptr) {      SetParameterization(local_parameterization);    }  }  // The size of the parameter block.  int Size() const { return size_; }  // Manipulate the parameter state.  bool SetState(const double* x) {    CHECK(x != nullptr) << "Tried to set the state of constant parameter "                        << "with user location " << user_state_;    CHECK(!IsConstant()) << "Tried to set the state of constant parameter "                         << "with user location " << user_state_;    state_ = x;    return UpdateLocalParameterizationJacobian();  }  // Copy the current parameter state out to x. This is "GetState()" rather than  // simply "state()" since it is actively copying the data into the passed  // pointer.  void GetState(double* x) const {    if (x != state_) {      std::copy(state_, state_ + size_, x);    }  }  // Direct pointers to the current state.  const double* state() const { return state_; }  const double* user_state() const { return user_state_; }  double* mutable_user_state() { return user_state_; }  const LocalParameterization* local_parameterization() const {    return local_parameterization_;  }  LocalParameterization* mutable_local_parameterization() {    return local_parameterization_;  }  // Set this parameter block to vary or not.  void SetConstant() { is_set_constant_ = true; }  void SetVarying() { is_set_constant_ = false; }  bool IsConstant() const { return (is_set_constant_ || LocalSize() == 0); }  double UpperBound(int index) const {    return (upper_bounds_ ? upper_bounds_[index]                          : std::numeric_limits<double>::max());  }  double LowerBound(int index) const {    return (lower_bounds_ ? lower_bounds_[index]                          : -std::numeric_limits<double>::max());  }  bool IsUpperBounded() const { return (upper_bounds_ == nullptr); }  bool IsLowerBounded() const { return (lower_bounds_ == nullptr); }  // This parameter block's index in an array.  int index() const { return index_; }  void set_index(int index) { index_ = index; }  // This parameter offset inside a larger state vector.  int state_offset() const { return state_offset_; }  void set_state_offset(int state_offset) { state_offset_ = state_offset; }  // This parameter offset inside a larger delta vector.  int delta_offset() const { return delta_offset_; }  void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; }  // Methods relating to the parameter block's parameterization.  // The local to global jacobian. Returns nullptr if there is no local  // parameterization for this parameter block. The returned matrix is row-major  // and has Size() rows and  LocalSize() columns.  const double* LocalParameterizationJacobian() const {    return local_parameterization_jacobian_.get();  }  int LocalSize() const {    return (local_parameterization_ == nullptr)               ? size_               : local_parameterization_->LocalSize();  }  // Set the parameterization. The parameter block does not take  // ownership of the parameterization.  void SetParameterization(LocalParameterization* new_parameterization) {    // Nothing to do if the new parameterization is the same as the    // old parameterization.    if (new_parameterization == local_parameterization_) {      return;    }    if (new_parameterization == nullptr) {      local_parameterization_ = nullptr;      return;    }    CHECK(new_parameterization->GlobalSize() == size_)        << "Invalid parameterization for parameter block. The parameter block "        << "has size " << size_ << " while the parameterization has a global "        << "size of " << new_parameterization->GlobalSize() << ". Did you "        << "accidentally use the wrong parameter block or parameterization?";    CHECK_GE(new_parameterization->LocalSize(), 0)        << "Invalid parameterization. Parameterizations must have a "        << "non-negative dimensional tangent space.";    local_parameterization_ = new_parameterization;    local_parameterization_jacobian_.reset(        new double[local_parameterization_->GlobalSize() *                   local_parameterization_->LocalSize()]);    CHECK(UpdateLocalParameterizationJacobian())        << "Local parameterization Jacobian computation failed for x: "        << ConstVectorRef(state_, Size()).transpose();  }  void SetUpperBound(int index, double upper_bound) {    CHECK_LT(index, size_);    if (upper_bound >= std::numeric_limits<double>::max() && !upper_bounds_) {      return;    }    if (!upper_bounds_) {      upper_bounds_.reset(new double[size_]);      std::fill(upper_bounds_.get(),                upper_bounds_.get() + size_,                std::numeric_limits<double>::max());    }    upper_bounds_[index] = upper_bound;  }  void SetLowerBound(int index, double lower_bound) {    CHECK_LT(index, size_);    if (lower_bound <= -std::numeric_limits<double>::max() && !lower_bounds_) {      return;    }    if (!lower_bounds_) {      lower_bounds_.reset(new double[size_]);      std::fill(lower_bounds_.get(),                lower_bounds_.get() + size_,                -std::numeric_limits<double>::max());    }    lower_bounds_[index] = lower_bound;  }  // Generalization of the addition operation. This is the same as  // LocalParameterization::Plus() followed by projection onto the  // hyper cube implied by the bounds constraints.  bool Plus(const double* x, const double* delta, double* x_plus_delta) {    if (local_parameterization_ != nullptr) {      if (!local_parameterization_->Plus(x, delta, x_plus_delta)) {        return false;      }    } else {      VectorRef(x_plus_delta, size_) =          ConstVectorRef(x, size_) + ConstVectorRef(delta, size_);    }    // Project onto the box constraints.    if (lower_bounds_.get() != nullptr) {      for (int i = 0; i < size_; ++i) {        x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]);      }    }    if (upper_bounds_.get() != nullptr) {      for (int i = 0; i < size_; ++i) {        x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]);      }    }    return true;  }  std::string ToString() const {    return StringPrintf(        "{ this=%p, user_state=%p, state=%p, size=%d, "        "constant=%d, index=%d, state_offset=%d, "        "delta_offset=%d }",        this,        user_state_,        state_,        size_,        is_set_constant_,        index_,        state_offset_,        delta_offset_);  }  void EnableResidualBlockDependencies() {    CHECK(residual_blocks_.get() == nullptr)        << "Ceres bug: There is already a residual block collection "        << "for parameter block: " << ToString();    residual_blocks_.reset(new ResidualBlockSet);  }  void AddResidualBlock(ResidualBlock* residual_block) {    CHECK(residual_blocks_.get() != nullptr)        << "Ceres bug: The residual block collection is null for parameter "        << "block: " << ToString();    residual_blocks_->insert(residual_block);  }  void RemoveResidualBlock(ResidualBlock* residual_block) {    CHECK(residual_blocks_.get() != nullptr)        << "Ceres bug: The residual block collection is null for parameter "        << "block: " << ToString();    CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end())        << "Ceres bug: Missing residual for parameter block: " << ToString();    residual_blocks_->erase(residual_block);  }  // This is only intended for iterating; perhaps this should only expose  // .begin() and .end().  ResidualBlockSet* mutable_residual_blocks() { return residual_blocks_.get(); }  double LowerBoundForParameter(int index) const {    if (lower_bounds_.get() == nullptr) {      return -std::numeric_limits<double>::max();    } else {      return lower_bounds_[index];    }  }  double UpperBoundForParameter(int index) const {    if (upper_bounds_.get() == nullptr) {      return std::numeric_limits<double>::max();    } else {      return upper_bounds_[index];    }  } private:  bool UpdateLocalParameterizationJacobian() {    if (local_parameterization_ == nullptr) {      return true;    }    // Update the local to global Jacobian. In some cases this is    // wasted effort; if this is a bottleneck, we will find a solution    // at that time.    const int jacobian_size = Size() * LocalSize();    InvalidateArray(jacobian_size, local_parameterization_jacobian_.get());    if (!local_parameterization_->ComputeJacobian(            state_, local_parameterization_jacobian_.get())) {      LOG(WARNING) << "Local parameterization Jacobian computation failed"                      "for x: "                   << ConstVectorRef(state_, Size()).transpose();      return false;    }    if (!IsArrayValid(jacobian_size, local_parameterization_jacobian_.get())) {      LOG(WARNING) << "Local parameterization Jacobian computation returned"                   << "an invalid matrix for x: "                   << ConstVectorRef(state_, Size()).transpose()                   << "\n Jacobian matrix : "                   << ConstMatrixRef(local_parameterization_jacobian_.get(),                                     Size(),                                     LocalSize());      return false;    }    return true;  }  double* user_state_ = nullptr;  int size_ = -1;  bool is_set_constant_ = false;  LocalParameterization* local_parameterization_ = nullptr;  // The "state" of the parameter. These fields are only needed while the  // solver is running. While at first glance using mutable is a bad idea, this  // ends up simplifying the internals of Ceres enough to justify the potential  // pitfalls of using "mutable."  mutable const double* state_ = nullptr;  mutable std::unique_ptr<double[]> local_parameterization_jacobian_;  // The index of the parameter. This is used by various other parts of Ceres to  // permit switching from a ParameterBlock* to an index in another array.  int index_ = -1;  // The offset of this parameter block inside a larger state vector.  int state_offset_ = -1;  // The offset of this parameter block inside a larger delta vector.  int delta_offset_ = -1;  // If non-null, contains the residual blocks this parameter block is in.  std::unique_ptr<ResidualBlockSet> residual_blocks_;  // Upper and lower bounds for the parameter block.  SetUpperBound  // and SetLowerBound lazily initialize the upper_bounds_ and  // lower_bounds_ arrays. If they are never called, then memory for  // these arrays is never allocated. Thus for problems where there  // are no bounds, or only one sided bounds we do not pay the cost of  // allocating memory for the inactive bounds constraints.  //  // Upon initialization these arrays are initialized to  // std::numeric_limits<double>::max() and  // -std::numeric_limits<double>::max() respectively which correspond  // to the parameter block being unconstrained.  std::unique_ptr<double[]> upper_bounds_;  std::unique_ptr<double[]> lower_bounds_;  // Necessary so ProblemImpl can clean up the parameterizations.  friend class ProblemImpl;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_PARAMETER_BLOCK_H_
 |