| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/normal_prior.h"#include <cstddef>#include "gtest/gtest.h"#include "ceres/internal/eigen.h"#include "ceres/random.h"namespace ceres {namespace internal {namespace {void RandomVector(Vector* v) {  for (int r = 0; r < v->rows(); ++r)    (*v)[r] = 2 * RandDouble() - 1;}void RandomMatrix(Matrix* m) {  for (int r = 0; r < m->rows(); ++r) {    for (int c = 0; c < m->cols(); ++c) {      (*m)(r, c) = 2 * RandDouble() - 1;    }  }}}  // namespaceTEST(NormalPriorTest, ResidualAtRandomPosition) {  srand(5);  for (int num_rows = 1; num_rows < 5; ++num_rows) {    for (int num_cols = 1; num_cols < 5; ++num_cols) {      Vector b(num_cols);      RandomVector(&b);      Matrix A(num_rows, num_cols);      RandomMatrix(&A);      double * x = new double[num_cols];      for (int i = 0; i < num_cols; ++i)        x[i] = 2 * RandDouble() - 1;      double * jacobian = new double[num_rows * num_cols];      Vector residuals(num_rows);      NormalPrior prior(A, b);      prior.Evaluate(&x, residuals.data(), &jacobian);      // Compare the norm of the residual      double residual_diff_norm =          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);      // Compare the jacobians      MatrixRef J(jacobian, num_rows, num_cols);      double jacobian_diff_norm = (J - A).norm();      EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10);      delete []x;      delete []jacobian;    }  }}TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) {  srand(5);  for (int num_rows = 1; num_rows < 5; ++num_rows) {    for (int num_cols = 1; num_cols < 5; ++num_cols) {      Vector b(num_cols);      RandomVector(&b);      Matrix A(num_rows, num_cols);      RandomMatrix(&A);      double * x = new double[num_cols];      for (int i = 0; i < num_cols; ++i)        x[i] = 2 * RandDouble() - 1;      double* jacobians[1];      jacobians[0] = NULL;      Vector residuals(num_rows);      NormalPrior prior(A, b);      prior.Evaluate(&x, residuals.data(), jacobians);      // Compare the norm of the residual      double residual_diff_norm =          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);      prior.Evaluate(&x, residuals.data(), NULL);      // Compare the norm of the residual      residual_diff_norm =          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);      delete []x;    }  }}}  // namespace internal}  // namespace ceres
 |