| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2017 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #ifndef CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_
 
- #define CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_
 
- #include <memory>
 
- #include <vector>
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- namespace ceres {
 
- namespace internal {
 
- // This class is used to repeatedly compute the inner product
 
- //
 
- //   result = m' * m
 
- //
 
- // where the sparsity structure of m remains constant across calls.
 
- //
 
- // Upon creation, the class computes and caches information needed to
 
- // compute v, and then uses it to efficiently compute the product
 
- // every time InnerProductComputer::Compute is called.
 
- //
 
- // See sparse_normal_cholesky_solver.cc for example usage.
 
- //
 
- // Note that the result matrix is a block upper or lower-triangular
 
- // matrix, i.e., it will contain entries in the upper or lower
 
- // triangular part of the matrix corresponding to the block that occur
 
- // along its diagonal.
 
- //
 
- // This is not a problem as sparse linear algebra libraries can ignore
 
- // these entries with ease and the space used is minimal/linear in the
 
- // size of the matrices.
 
- class InnerProductComputer {
 
-  public:
 
-   // Factory
 
-   //
 
-   // m is the input matrix
 
-   //
 
-   // Since m' * m is a symmetric matrix, we only compute half of the
 
-   // matrix and the value of storage_type which must be
 
-   // UPPER_TRIANGULAR or LOWER_TRIANGULAR determines which half is
 
-   // computed.
 
-   //
 
-   // The user must ensure that the matrix m is valid for the life time
 
-   // of this object.
 
-   static InnerProductComputer* Create(
 
-       const BlockSparseMatrix& m,
 
-       CompressedRowSparseMatrix::StorageType storage_type);
 
-   // This factory method allows the user control over range of row
 
-   // blocks of m that should be used to compute the inner product.
 
-   //
 
-   // a = m(start_row_block : end_row_block, :);
 
-   // result = a' * a;
 
-   static InnerProductComputer* Create(
 
-       const BlockSparseMatrix& m,
 
-       int start_row_block,
 
-       int end_row_block,
 
-       CompressedRowSparseMatrix::StorageType storage_type);
 
-   // Update result_ to be numerically equal to m' * m.
 
-   void Compute();
 
-   // Accessors for the result containing the inner product.
 
-   //
 
-   // Compute must be called before accessing this result for
 
-   // the first time.
 
-   const CompressedRowSparseMatrix& result() const { return *result_; }
 
-   CompressedRowSparseMatrix* mutable_result() const { return result_.get(); }
 
-  private:
 
-   // A ProductTerm is a term in the block inner product of a matrix
 
-   // with itself.
 
-   struct ProductTerm {
 
-     ProductTerm(const int row, const int col, const int index)
 
-         : row(row), col(col), index(index) {}
 
-     bool operator<(const ProductTerm& right) const {
 
-       if (row == right.row) {
 
-         if (col == right.col) {
 
-           return index < right.index;
 
-         }
 
-         return col < right.col;
 
-       }
 
-       return row < right.row;
 
-     }
 
-     int row;
 
-     int col;
 
-     int index;
 
-   };
 
-   InnerProductComputer(const BlockSparseMatrix& m,
 
-                        int start_row_block,
 
-                        int end_row_block);
 
-   void Init(CompressedRowSparseMatrix::StorageType storage_type);
 
-   CompressedRowSparseMatrix* CreateResultMatrix(
 
-       const CompressedRowSparseMatrix::StorageType storage_type,
 
-       int num_nonzeros);
 
-   int ComputeNonzeros(const std::vector<ProductTerm>& product_terms,
 
-                       std::vector<int>* row_block_nnz);
 
-   void ComputeOffsetsAndCreateResultMatrix(
 
-       const CompressedRowSparseMatrix::StorageType storage_type,
 
-       const std::vector<ProductTerm>& product_terms);
 
-   const BlockSparseMatrix& m_;
 
-   const int start_row_block_;
 
-   const int end_row_block_;
 
-   std::unique_ptr<CompressedRowSparseMatrix> result_;
 
-   // For each term in the inner product, result_offsets_ contains the
 
-   // location in the values array of the result_ matrix where it
 
-   // should be stored.
 
-   //
 
-   // This is the principal look up table that allows this class to
 
-   // compute the inner product fast.
 
-   std::vector<int> result_offsets_;
 
- };
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_
 
 
  |