| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//// Tests shared across evaluators. The tests try all combinations of linear// solver and num_eliminate_blocks (for schur-based solvers).#include "ceres/evaluator.h"#include <memory>#include "ceres/casts.h"#include "ceres/cost_function.h"#include "ceres/crs_matrix.h"#include "ceres/evaluator_test_utils.h"#include "ceres/internal/eigen.h"#include "ceres/local_parameterization.h"#include "ceres/problem_impl.h"#include "ceres/program.h"#include "ceres/sized_cost_function.h"#include "ceres/sparse_matrix.h"#include "ceres/stringprintf.h"#include "ceres/types.h"#include "gtest/gtest.h"namespace ceres {namespace internal {using std::string;using std::vector;// TODO(keir): Consider pushing this into a common test utils file.template <int kFactor, int kNumResiduals, int... Ns>class ParameterIgnoringCostFunction    : public SizedCostFunction<kNumResiduals, Ns...> {  typedef SizedCostFunction<kNumResiduals, Ns...> Base; public:  explicit ParameterIgnoringCostFunction(bool succeeds = true)      : succeeds_(succeeds) {}  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const final {    for (int i = 0; i < Base::num_residuals(); ++i) {      residuals[i] = i + 1;    }    if (jacobians) {      for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) {        // The jacobians here are full sized, but they are transformed in the        // evaluator into the "local" jacobian. In the tests, the "subset        // constant" parameterization is used, which should pick out columns        // from these jacobians. Put values in the jacobian that make this        // obvious; in particular, make the jacobians like this:        //        //   1 2 3 4 ...        //   1 2 3 4 ...   .*  kFactor        //   1 2 3 4 ...        //        // where the multiplication by kFactor makes it easier to distinguish        // between Jacobians of different residuals for the same parameter.        if (jacobians[k] != nullptr) {          MatrixRef jacobian(jacobians[k],                             Base::num_residuals(),                             Base::parameter_block_sizes()[k]);          for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) {            jacobian.col(j).setConstant(kFactor * (j + 1));          }        }      }    }    return succeeds_;  } private:  bool succeeds_;};struct EvaluatorTestOptions {  EvaluatorTestOptions(LinearSolverType linear_solver_type,                       int num_eliminate_blocks,                       bool dynamic_sparsity = false)    : linear_solver_type(linear_solver_type),      num_eliminate_blocks(num_eliminate_blocks),      dynamic_sparsity(dynamic_sparsity) {}  LinearSolverType linear_solver_type;  int num_eliminate_blocks;  bool dynamic_sparsity;};struct EvaluatorTest    : public ::testing::TestWithParam<EvaluatorTestOptions> {  Evaluator* CreateEvaluator(Program* program) {    // This program is straight from the ProblemImpl, and so has no index/offset    // yet; compute it here as required by the evaluator implementations.    program->SetParameterOffsetsAndIndex();    if (VLOG_IS_ON(1)) {      string report;      StringAppendF(&report, "Creating evaluator with type: %d",                    GetParam().linear_solver_type);      if (GetParam().linear_solver_type == SPARSE_NORMAL_CHOLESKY) {        StringAppendF(&report, ", dynamic_sparsity: %d",                      GetParam().dynamic_sparsity);      }      StringAppendF(&report, " and num_eliminate_blocks: %d",                    GetParam().num_eliminate_blocks);      VLOG(1) << report;    }    Evaluator::Options options;    options.linear_solver_type = GetParam().linear_solver_type;    options.num_eliminate_blocks = GetParam().num_eliminate_blocks;    options.dynamic_sparsity = GetParam().dynamic_sparsity;    options.context = problem.context();    string error;    return Evaluator::Create(options, program, &error);  }  void EvaluateAndCompare(ProblemImpl *problem,                          int expected_num_rows,                          int expected_num_cols,                          double expected_cost,                          const double* expected_residuals,                          const double* expected_gradient,                          const double* expected_jacobian) {    std::unique_ptr<Evaluator> evaluator(        CreateEvaluator(problem->mutable_program()));    int num_residuals = expected_num_rows;    int num_parameters = expected_num_cols;    double cost = -1;    Vector residuals(num_residuals);    residuals.setConstant(-2000);    Vector gradient(num_parameters);    gradient.setConstant(-3000);    std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());    ASSERT_EQ(expected_num_rows, evaluator->NumResiduals());    ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters());    ASSERT_EQ(expected_num_rows, jacobian->num_rows());    ASSERT_EQ(expected_num_cols, jacobian->num_cols());    vector<double> state(evaluator->NumParameters());    ASSERT_TRUE(evaluator->Evaluate(          &state[0],          &cost,          expected_residuals != nullptr ? &residuals[0]  : nullptr,          expected_gradient  != nullptr ? &gradient[0]   : nullptr,          expected_jacobian  != nullptr ? jacobian.get() : nullptr));    Matrix actual_jacobian;    if (expected_jacobian != nullptr) {      jacobian->ToDenseMatrix(&actual_jacobian);    }    CompareEvaluations(expected_num_rows,                       expected_num_cols,                       expected_cost,                       expected_residuals,                       expected_gradient,                       expected_jacobian,                       cost,                       &residuals[0],                       &gradient[0],                       actual_jacobian.data());  }  // Try all combinations of parameters for the evaluator.  void CheckAllEvaluationCombinations(const ExpectedEvaluation &expected) {    for (int i = 0; i < 8; ++i) {      EvaluateAndCompare(&problem,                         expected.num_rows,                         expected.num_cols,                         expected.cost,                         (i & 1) ? expected.residuals : nullptr,                         (i & 2) ? expected.gradient  : nullptr,                         (i & 4) ? expected.jacobian  : nullptr);    }  }  // The values are ignored completely by the cost function.  double x[2];  double y[3];  double z[4];  ProblemImpl problem;};static void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) {  VectorRef(sparse_matrix->mutable_values(),            sparse_matrix->num_nonzeros()).setConstant(value);}TEST_P(EvaluatorTest, SingleResidualProblem) {  problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,                           nullptr,                           x, y, z);  ExpectedEvaluation expected = {    // Rows/columns    3, 9,    // Cost    7.0,    // Residuals    { 1.0, 2.0, 3.0 },    // Gradient    { 6.0, 12.0,              // x      6.0, 12.0, 18.0,        // y      6.0, 12.0, 18.0, 24.0,  // z    },    // Jacobian    //   x          y             z    { 1, 2,   1, 2, 3,   1, 2, 3, 4,      1, 2,   1, 2, 3,   1, 2, 3, 4,      1, 2,   1, 2, 3,   1, 2, 3, 4    }  };  CheckAllEvaluationCombinations(expected);}TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) {  // Add the parameters in explicit order to force the ordering in the program.  problem.AddParameterBlock(x,  2);  problem.AddParameterBlock(y,  3);  problem.AddParameterBlock(z,  4);  // Then use a cost function which is similar to the others, but swap around  // the ordering of the parameters to the cost function. This shouldn't affect  // the jacobian evaluation, but requires explicit handling in the evaluators.  // At one point the compressed row evaluator had a bug that went undetected  // for a long time, since by chance most users added parameters to the problem  // in the same order that they occurred as parameters to a cost function.  problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>,                           nullptr,                           z, y, x);  ExpectedEvaluation expected = {    // Rows/columns    3, 9,    // Cost    7.0,    // Residuals    { 1.0, 2.0, 3.0 },    // Gradient    { 6.0, 12.0,              // x      6.0, 12.0, 18.0,        // y      6.0, 12.0, 18.0, 24.0,  // z    },    // Jacobian    //   x          y             z    { 1, 2,   1, 2, 3,   1, 2, 3, 4,      1, 2,   1, 2, 3,   1, 2, 3, 4,      1, 2,   1, 2, 3,   1, 2, 3, 4    }  };  CheckAllEvaluationCombinations(expected);}TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) {  // These parameters are not used.  double a[2];  double b[1];  double c[1];  double d[3];  // Add the parameters in a mixed order so the Jacobian is "checkered" with the  // values from the other parameters.  problem.AddParameterBlock(a, 2);  problem.AddParameterBlock(x, 2);  problem.AddParameterBlock(b, 1);  problem.AddParameterBlock(y, 3);  problem.AddParameterBlock(c, 1);  problem.AddParameterBlock(z, 4);  problem.AddParameterBlock(d, 3);  problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>,                           nullptr,                           x, y, z);  ExpectedEvaluation expected = {    // Rows/columns    3, 16,    // Cost    7.0,    // Residuals    { 1.0, 2.0, 3.0 },    // Gradient    { 0.0, 0.0,               // a      6.0, 12.0,              // x      0.0,                    // b      6.0, 12.0, 18.0,        // y      0.0,                    // c      6.0, 12.0, 18.0, 24.0,  // z      0.0, 0.0, 0.0,          // d    },    // Jacobian    //   a        x     b           y     c              z           d    { 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0,      0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0,      0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0    }  };  CheckAllEvaluationCombinations(expected);}TEST_P(EvaluatorTest, MultipleResidualProblem) {  // Add the parameters in explicit order to force the ordering in the program.  problem.AddParameterBlock(x,  2);  problem.AddParameterBlock(y,  3);  problem.AddParameterBlock(z,  4);  // f(x, y) in R^2  problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,                           nullptr,                           x, y);  // g(x, z) in R^3  problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,                           nullptr,                           x, z);  // h(y, z) in R^4  problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,                           nullptr,                           y, z);  ExpectedEvaluation expected = {    // Rows/columns    9, 9,    // Cost    // f       g           h    (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,    // Residuals    { 1.0, 2.0,           // f      1.0, 2.0, 3.0,      // g      1.0, 2.0, 3.0, 4.0  // h    },    // Gradient    { 15.0, 30.0,               // x      33.0, 66.0, 99.0,         // y      42.0, 84.0, 126.0, 168.0  // z    },    // Jacobian    //                x        y           z    {   /* f(x, y) */ 1, 2,    1, 2, 3,    0, 0, 0, 0,                      1, 2,    1, 2, 3,    0, 0, 0, 0,        /* g(x, z) */ 2, 4,    0, 0, 0,    2, 4, 6, 8,                      2, 4,    0, 0, 0,    2, 4, 6, 8,                      2, 4,    0, 0, 0,    2, 4, 6, 8,        /* h(y, z) */ 0, 0,    3, 6, 9,    3, 6, 9, 12,                      0, 0,    3, 6, 9,    3, 6, 9, 12,                      0, 0,    3, 6, 9,    3, 6, 9, 12,                      0, 0,    3, 6, 9,    3, 6, 9, 12    }  };  CheckAllEvaluationCombinations(expected);}TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) {  // Add the parameters in explicit order to force the ordering in the program.  problem.AddParameterBlock(x,  2);  // Fix y's first dimension.  vector<int> y_fixed;  y_fixed.push_back(0);  problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed));  // Fix z's second dimension.  vector<int> z_fixed;  z_fixed.push_back(1);  problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed));  // f(x, y) in R^2  problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,                           nullptr,                           x, y);  // g(x, z) in R^3  problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,                           nullptr,                           x, z);  // h(y, z) in R^4  problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,                           nullptr,                           y, z);  ExpectedEvaluation expected = {    // Rows/columns    9, 7,    // Cost    // f       g           h    (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,    // Residuals    { 1.0, 2.0,           // f      1.0, 2.0, 3.0,      // g      1.0, 2.0, 3.0, 4.0  // h    },    // Gradient    { 15.0, 30.0,         // x      66.0, 99.0,         // y      42.0, 126.0, 168.0  // z    },    // Jacobian    //                x        y           z    {   /* f(x, y) */ 1, 2,    2, 3,    0, 0, 0,                      1, 2,    2, 3,    0, 0, 0,        /* g(x, z) */ 2, 4,    0, 0,    2, 6, 8,                      2, 4,    0, 0,    2, 6, 8,                      2, 4,    0, 0,    2, 6, 8,        /* h(y, z) */ 0, 0,    6, 9,    3, 9, 12,                      0, 0,    6, 9,    3, 9, 12,                      0, 0,    6, 9,    3, 9, 12,                      0, 0,    6, 9,    3, 9, 12    }  };  CheckAllEvaluationCombinations(expected);}TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) {  // The values are ignored completely by the cost function.  double x[2];  double y[3];  double z[4];  // Add the parameters in explicit order to force the ordering in the program.  problem.AddParameterBlock(x,  2);  problem.AddParameterBlock(y,  3);  problem.AddParameterBlock(z,  4);  // f(x, y) in R^2 problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>,                          nullptr,                          x, y);  // g(x, z) in R^3 problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>,                          nullptr,                          x, z);  // h(y, z) in R^4  problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>,                           nullptr,                           y, z);  // For this test, "z" is constant.  problem.SetParameterBlockConstant(z);  // Create the reduced program which is missing the fixed "z" variable.  // Normally, the preprocessing of the program that happens in solver_impl  // takes care of this, but we don't want to invoke the solver here.  Program reduced_program;  vector<ParameterBlock*>* parameter_blocks =      problem.mutable_program()->mutable_parameter_blocks();  // "z" is the last parameter; save it for later and pop it off temporarily.  // Note that "z" will still get read during evaluation, so it cannot be  // deleted at this point.  ParameterBlock* parameter_block_z = parameter_blocks->back();  parameter_blocks->pop_back();  ExpectedEvaluation expected = {    // Rows/columns    9, 5,    // Cost    // f       g           h    (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0,    // Residuals    { 1.0, 2.0,           // f      1.0, 2.0, 3.0,      // g      1.0, 2.0, 3.0, 4.0  // h    },    // Gradient    { 15.0, 30.0,        // x      33.0, 66.0, 99.0,  // y    },    // Jacobian    //                x        y    {   /* f(x, y) */ 1, 2,    1, 2, 3,                      1, 2,    1, 2, 3,        /* g(x, z) */ 2, 4,    0, 0, 0,                      2, 4,    0, 0, 0,                      2, 4,    0, 0, 0,        /* h(y, z) */ 0, 0,    3, 6, 9,                      0, 0,    3, 6, 9,                      0, 0,    3, 6, 9,                      0, 0,    3, 6, 9    }  };  CheckAllEvaluationCombinations(expected);  // Restore parameter block z, so it will get freed in a consistent way.  parameter_blocks->push_back(parameter_block_z);}TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) {  // Switch the return value to failure.  problem.AddResidualBlock(      new ParameterIgnoringCostFunction<20, 3, 2, 3, 4>(false),      nullptr,      x,      y,      z);  // The values are ignored.  double state[9];  std::unique_ptr<Evaluator> evaluator(      CreateEvaluator(problem.mutable_program()));  std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());  double cost;  EXPECT_FALSE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr));}// In the pairs, the first argument is the linear solver type, and the second// argument is num_eliminate_blocks. Changing the num_eliminate_blocks only// makes sense for the schur-based solvers.//// Try all values of num_eliminate_blocks that make sense given that in the// tests a maximum of 4 parameter blocks are present.INSTANTIATE_TEST_SUITE_P(    LinearSolvers,    EvaluatorTest,    ::testing::Values(EvaluatorTestOptions(DENSE_QR, 0),                      EvaluatorTestOptions(DENSE_SCHUR, 0),                      EvaluatorTestOptions(DENSE_SCHUR, 1),                      EvaluatorTestOptions(DENSE_SCHUR, 2),                      EvaluatorTestOptions(DENSE_SCHUR, 3),                      EvaluatorTestOptions(DENSE_SCHUR, 4),                      EvaluatorTestOptions(SPARSE_SCHUR, 0),                      EvaluatorTestOptions(SPARSE_SCHUR, 1),                      EvaluatorTestOptions(SPARSE_SCHUR, 2),                      EvaluatorTestOptions(SPARSE_SCHUR, 3),                      EvaluatorTestOptions(SPARSE_SCHUR, 4),                      EvaluatorTestOptions(ITERATIVE_SCHUR, 0),                      EvaluatorTestOptions(ITERATIVE_SCHUR, 1),                      EvaluatorTestOptions(ITERATIVE_SCHUR, 2),                      EvaluatorTestOptions(ITERATIVE_SCHUR, 3),                      EvaluatorTestOptions(ITERATIVE_SCHUR, 4),                      EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, false),                      EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, true)));// Simple cost function used to check if the evaluator is sensitive to// state changes.class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { public:  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const final {    double x1 = parameters[0][0];    double x2 = parameters[0][1];    residuals[0] = x1 * x1;    residuals[1] = x2 * x2;    if (jacobians != nullptr) {      double* jacobian = jacobians[0];      if (jacobian != nullptr) {        jacobian[0] = 2.0 * x1;        jacobian[1] = 0.0;        jacobian[2] = 0.0;        jacobian[3] = 2.0 * x2;      }    }    return true;  }};TEST(Evaluator, EvaluatorRespectsParameterChanges) {  ProblemImpl problem;  double x[2];  x[0] = 1.0;  x[1] = 1.0;  problem.AddResidualBlock(new ParameterSensitiveCostFunction(), nullptr, x);  Program* program = problem.mutable_program();  program->SetParameterOffsetsAndIndex();  Evaluator::Options options;  options.linear_solver_type = DENSE_QR;  options.num_eliminate_blocks = 0;  options.context = problem.context();  string error;  std::unique_ptr<Evaluator> evaluator(      Evaluator::Create(options, program, &error));  std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());  ASSERT_EQ(2, jacobian->num_rows());  ASSERT_EQ(2, jacobian->num_cols());  double state[2];  state[0] = 2.0;  state[1] = 3.0;  // The original state of a residual block comes from the user's  // state. So the original state is 1.0, 1.0, and the only way we get  // the 2.0, 3.0 results in the following tests is if it respects the  // values in the state vector.  // Cost only; no residuals and no jacobian.  {    double cost = -1;    ASSERT_TRUE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr));    EXPECT_EQ(48.5, cost);  }  // Cost and residuals, no jacobian.  {    double cost = -1;    double residuals[2] = {-2, -2};    ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, nullptr, nullptr));    EXPECT_EQ(48.5, cost);    EXPECT_EQ(4, residuals[0]);    EXPECT_EQ(9, residuals[1]);  }  // Cost, residuals, and jacobian.  {    double cost = -1;    double residuals[2] = {-2, -2};    SetSparseMatrixConstant(jacobian.get(), -1);    ASSERT_TRUE(        evaluator->Evaluate(state, &cost, residuals, nullptr, jacobian.get()));    EXPECT_EQ(48.5, cost);    EXPECT_EQ(4, residuals[0]);    EXPECT_EQ(9, residuals[1]);    Matrix actual_jacobian;    jacobian->ToDenseMatrix(&actual_jacobian);    Matrix expected_jacobian(2, 2);    expected_jacobian << 2 * state[0], 0, 0, 2 * state[1];    EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all())        << "Actual:\n"        << actual_jacobian << "\nExpected:\n"        << expected_jacobian;  }}}  // namespace internal}  // namespace ceres
 |