| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/eigensparse.h"#ifdef CERES_USE_EIGEN_SPARSE#include <sstream>#include "Eigen/SparseCholesky"#include "Eigen/SparseCore"#include "ceres/compressed_row_sparse_matrix.h"#include "ceres/linear_solver.h"namespace ceres {namespace internal {// TODO(sameeragarwal): Use enable_if to clean up the implementations// for when Scalar == double.template <typename Solver>class EigenSparseCholeskyTemplate : public SparseCholesky { public:  EigenSparseCholeskyTemplate() : analyzed_(false) {}  virtual ~EigenSparseCholeskyTemplate() {}  CompressedRowSparseMatrix::StorageType StorageType() const final {    return CompressedRowSparseMatrix::LOWER_TRIANGULAR;  }  LinearSolverTerminationType Factorize(      const Eigen::SparseMatrix<typename Solver::Scalar>& lhs,      std::string* message) {    if (!analyzed_) {      solver_.analyzePattern(lhs);      if (VLOG_IS_ON(2)) {        std::stringstream ss;        solver_.dumpMemory(ss);        VLOG(2) << "Symbolic Analysis\n" << ss.str();      }      if (solver_.info() != Eigen::Success) {        *message = "Eigen failure. Unable to find symbolic factorization.";        return LINEAR_SOLVER_FATAL_ERROR;      }      analyzed_ = true;    }    solver_.factorize(lhs);    if (solver_.info() != Eigen::Success) {      *message = "Eigen failure. Unable to find numeric factorization.";      return LINEAR_SOLVER_FAILURE;    }    return LINEAR_SOLVER_SUCCESS;  }  LinearSolverTerminationType Solve(const double* rhs_ptr,                                    double* solution_ptr,                                    std::string* message) {    CHECK(analyzed_) << "Solve called without a call to Factorize first.";    scalar_rhs_ = ConstVectorRef(rhs_ptr, solver_.cols())                      .template cast<typename Solver::Scalar>();    // The two casts are needed if the Scalar in this class is not    // double. For code simplicity we are going to assume that Eigen    // is smart enough to figure out that casting a double Vector to a    // double Vector is a straight copy. If this turns into a    // performance bottleneck (unlikely), we can revisit this.    scalar_solution_ = solver_.solve(scalar_rhs_);    VectorRef(solution_ptr, solver_.cols()) =        scalar_solution_.template cast<double>();    if (solver_.info() != Eigen::Success) {      *message = "Eigen failure. Unable to do triangular solve.";      return LINEAR_SOLVER_FAILURE;    }    return LINEAR_SOLVER_SUCCESS;  }  LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,                                        std::string* message) final {    CHECK_EQ(lhs->storage_type(), StorageType());    typename Solver::Scalar* values_ptr = NULL;    if (std::is_same<typename Solver::Scalar, double>::value) {      values_ptr =          reinterpret_cast<typename Solver::Scalar*>(lhs->mutable_values());    } else {      // In the case where the scalar used in this class is not      // double. In that case, make a copy of the values array in the      // CompressedRowSparseMatrix and cast it to Scalar along the way.      values_ = ConstVectorRef(lhs->values(), lhs->num_nonzeros())                    .cast<typename Solver::Scalar>();      values_ptr = values_.data();    }    Eigen::MappedSparseMatrix<typename Solver::Scalar, Eigen::ColMajor>        eigen_lhs(lhs->num_rows(),                  lhs->num_rows(),                  lhs->num_nonzeros(),                  lhs->mutable_rows(),                  lhs->mutable_cols(),                  values_ptr);    return Factorize(eigen_lhs, message);  } private:  Eigen::Matrix<typename Solver::Scalar, Eigen::Dynamic, 1> values_,      scalar_rhs_, scalar_solution_;  bool analyzed_;  Solver solver_;};std::unique_ptr<SparseCholesky> EigenSparseCholesky::Create(    const OrderingType ordering_type) {  std::unique_ptr<SparseCholesky> sparse_cholesky;  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,                                Eigen::Upper,                                Eigen::AMDOrdering<int>>      WithAMDOrdering;  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,                                Eigen::Upper,                                Eigen::NaturalOrdering<int>>      WithNaturalOrdering;  if (ordering_type == AMD) {    sparse_cholesky.reset(new EigenSparseCholeskyTemplate<WithAMDOrdering>());  } else {    sparse_cholesky.reset(        new EigenSparseCholeskyTemplate<WithNaturalOrdering>());  }  return sparse_cholesky;}EigenSparseCholesky::~EigenSparseCholesky() {}std::unique_ptr<SparseCholesky> FloatEigenSparseCholesky::Create(    const OrderingType ordering_type) {  std::unique_ptr<SparseCholesky> sparse_cholesky;  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>,                                Eigen::Upper,                                Eigen::AMDOrdering<int>>      WithAMDOrdering;  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>,                                Eigen::Upper,                                Eigen::NaturalOrdering<int>>      WithNaturalOrdering;  if (ordering_type == AMD) {    sparse_cholesky.reset(new EigenSparseCholeskyTemplate<WithAMDOrdering>());  } else {    sparse_cholesky.reset(        new EigenSparseCholeskyTemplate<WithNaturalOrdering>());  }  return sparse_cholesky;}FloatEigenSparseCholesky::~FloatEigenSparseCholesky() {}}  // namespace internal}  // namespace ceres#endif  // CERES_USE_EIGEN_SPARSE
 |