| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//// TODO(keir): Implement a generic "compare sparse matrix implementations" test// suite that can compare all the implementations. Then this file would shrink// in size.#include "ceres/dense_sparse_matrix.h"#include <memory>#include "ceres/casts.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/triplet_sparse_matrix.h"#include "ceres/internal/eigen.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {static void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {  EXPECT_EQ(a->num_rows(), b->num_rows());  EXPECT_EQ(a->num_cols(), b->num_cols());  int num_rows = a->num_rows();  int num_cols = a->num_cols();  for (int i = 0; i < num_cols; ++i) {    Vector x = Vector::Zero(num_cols);    x(i) = 1.0;    Vector y_a = Vector::Zero(num_rows);    Vector y_b = Vector::Zero(num_rows);    a->RightMultiply(x.data(), y_a.data());    b->RightMultiply(x.data(), y_b.data());    EXPECT_EQ((y_a - y_b).norm(), 0);  }}class DenseSparseMatrixTest : public ::testing::Test { protected :  void SetUp() final {    std::unique_ptr<LinearLeastSquaresProblem> problem(        CreateLinearLeastSquaresProblemFromId(1));    CHECK(problem != nullptr);    tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));    dsm.reset(new DenseSparseMatrix(*tsm));    num_rows = tsm->num_rows();    num_cols = tsm->num_cols();  }  int num_rows;  int num_cols;  std::unique_ptr<TripletSparseMatrix> tsm;  std::unique_ptr<DenseSparseMatrix> dsm;};TEST_F(DenseSparseMatrixTest, RightMultiply) {  CompareMatrices(tsm.get(), dsm.get());  // Try with a not entirely zero vector to verify column interactions, which  // could be masked by a subtle bug when using the elementary vectors.  Vector a(num_cols);  for (int i = 0; i < num_cols; i++) {    a(i) = i;  }  Vector b1 = Vector::Zero(num_rows);  Vector b2 = Vector::Zero(num_rows);  tsm->RightMultiply(a.data(), b1.data());  dsm->RightMultiply(a.data(), b2.data());  EXPECT_EQ((b1 - b2).norm(), 0);}TEST_F(DenseSparseMatrixTest, LeftMultiply) {  for (int i = 0; i < num_rows; ++i) {    Vector a = Vector::Zero(num_rows);    a(i) = 1.0;    Vector b1 = Vector::Zero(num_cols);    Vector b2 = Vector::Zero(num_cols);    tsm->LeftMultiply(a.data(), b1.data());    dsm->LeftMultiply(a.data(), b2.data());    EXPECT_EQ((b1 - b2).norm(), 0);  }  // Try with a not entirely zero vector to verify column interactions, which  // could be masked by a subtle bug when using the elementary vectors.  Vector a(num_rows);  for (int i = 0; i < num_rows; i++) {    a(i) = i;  }  Vector b1 = Vector::Zero(num_cols);  Vector b2 = Vector::Zero(num_cols);  tsm->LeftMultiply(a.data(), b1.data());  dsm->LeftMultiply(a.data(), b2.data());  EXPECT_EQ((b1 - b2).norm(), 0);}TEST_F(DenseSparseMatrixTest, ColumnNorm) {  Vector b1 = Vector::Zero(num_cols);  Vector b2 = Vector::Zero(num_cols);  tsm->SquaredColumnNorm(b1.data());  dsm->SquaredColumnNorm(b2.data());  EXPECT_EQ((b1 - b2).norm(), 0);}TEST_F(DenseSparseMatrixTest, Scale) {  Vector scale(num_cols);  for (int i = 0; i < num_cols; ++i) {    scale(i) = i + 1;  }  tsm->ScaleColumns(scale.data());  dsm->ScaleColumns(scale.data());  CompareMatrices(tsm.get(), dsm.get());}TEST_F(DenseSparseMatrixTest, ToDenseMatrix) {  Matrix tsm_dense;  Matrix dsm_dense;  tsm->ToDenseMatrix(&tsm_dense);  dsm->ToDenseMatrix(&dsm_dense);  EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0);}}  // namespace internal}  // namespace ceres
 |