| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: strandmark@google.com (Petter Strandmark)
 
- #ifndef CERES_INTERNAL_CXSPARSE_H_
 
- #define CERES_INTERNAL_CXSPARSE_H_
 
- // This include must come before any #ifndef check on Ceres compile options.
 
- #include "ceres/internal/port.h"
 
- #ifndef CERES_NO_CXSPARSE
 
- #include <memory>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/sparse_cholesky.h"
 
- #include "cs.h"
 
- namespace ceres {
 
- namespace internal {
 
- class CompressedRowSparseMatrix;
 
- class TripletSparseMatrix;
 
- // This object provides access to solving linear systems using Cholesky
 
- // factorization with a known symbolic factorization. This features does not
 
- // explicitly exist in CXSparse. The methods in the class are nonstatic because
 
- // the class manages internal scratch space.
 
- class CXSparse {
 
-  public:
 
-   CXSparse();
 
-   ~CXSparse();
 
-   // Solve the system lhs * solution = rhs in place by using an
 
-   // approximate minimum degree fill reducing ordering.
 
-   bool SolveCholesky(cs_di* lhs, double* rhs_and_solution);
 
-   // Solves a linear system given its symbolic and numeric factorization.
 
-   void Solve(cs_dis* symbolic_factor,
 
-              csn* numeric_factor,
 
-              double* rhs_and_solution);
 
-   // Compute the numeric Cholesky factorization of A, given its
 
-   // symbolic factorization.
 
-   //
 
-   // Caller owns the result.
 
-   csn* Cholesky(cs_di* A, cs_dis* symbolic_factor);
 
-   // Creates a sparse matrix from a compressed-column form. No memory is
 
-   // allocated or copied; the structure A is filled out with info from the
 
-   // argument.
 
-   cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
 
-   // Creates a new matrix from a triplet form. Deallocate the returned matrix
 
-   // with Free. May return NULL if the compression or allocation fails.
 
-   cs_di* CreateSparseMatrix(TripletSparseMatrix* A);
 
-   // B = A'
 
-   //
 
-   // The returned matrix should be deallocated with Free when not used
 
-   // anymore.
 
-   cs_di* TransposeMatrix(cs_di* A);
 
-   // C = A * B
 
-   //
 
-   // The returned matrix should be deallocated with Free when not used
 
-   // anymore.
 
-   cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);
 
-   // Computes a symbolic factorization of A that can be used in SolveCholesky.
 
-   //
 
-   // The returned matrix should be deallocated with Free when not used anymore.
 
-   cs_dis* AnalyzeCholesky(cs_di* A);
 
-   // Computes a symbolic factorization of A that can be used in
 
-   // SolveCholesky, but does not compute a fill-reducing ordering.
 
-   //
 
-   // The returned matrix should be deallocated with Free when not used anymore.
 
-   cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);
 
-   // Computes a symbolic factorization of A that can be used in
 
-   // SolveCholesky. The difference from AnalyzeCholesky is that this
 
-   // function first detects the block sparsity of the matrix using
 
-   // information about the row and column blocks and uses this block
 
-   // sparse matrix to find a fill-reducing ordering. This ordering is
 
-   // then used to find a symbolic factorization. This can result in a
 
-   // significant performance improvement AnalyzeCholesky on block
 
-   // sparse matrices.
 
-   //
 
-   // The returned matrix should be deallocated with Free when not used
 
-   // anymore.
 
-   cs_dis* BlockAnalyzeCholesky(cs_di* A,
 
-                                const std::vector<int>& row_blocks,
 
-                                const std::vector<int>& col_blocks);
 
-   // Compute an fill-reducing approximate minimum degree ordering of
 
-   // the matrix A. ordering should be non-NULL and should point to
 
-   // enough memory to hold the ordering for the rows of A.
 
-   void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);
 
-   void Free(cs_di* sparse_matrix);
 
-   void Free(cs_dis* symbolic_factorization);
 
-   void Free(csn* numeric_factorization);
 
-  private:
 
-   // Cached scratch space
 
-   CS_ENTRY* scratch_;
 
-   int scratch_size_;
 
- };
 
- // An implementation of SparseCholesky interface using the CXSparse
 
- // library.
 
- class CXSparseCholesky : public SparseCholesky {
 
-  public:
 
-   // Factory
 
-   static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);
 
-   // SparseCholesky interface.
 
-   virtual ~CXSparseCholesky();
 
-   CompressedRowSparseMatrix::StorageType StorageType() const final;
 
-   LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
 
-                                         std::string* message) final;
 
-   LinearSolverTerminationType Solve(const double* rhs,
 
-                                     double* solution,
 
-                                     std::string* message) final;
 
-  private:
 
-   CXSparseCholesky(const OrderingType ordering_type);
 
-   void FreeSymbolicFactorization();
 
-   void FreeNumericFactorization();
 
-   const OrderingType ordering_type_;
 
-   CXSparse cs_;
 
-   cs_dis* symbolic_factor_;
 
-   csn* numeric_factor_;
 
- };
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #else   // CERES_NO_CXSPARSE
 
- typedef void cs_dis;
 
- class CXSparse {
 
-  public:
 
-   void Free(void* arg) {}
 
- };
 
- #endif  // CERES_NO_CXSPARSE
 
- #endif  // CERES_INTERNAL_CXSPARSE_H_
 
 
  |