| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: strandmark@google.com (Petter Strandmark)// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#ifndef CERES_NO_CXSPARSE#include "ceres/cxsparse.h"#include <string>#include <vector>#include "ceres/compressed_col_sparse_matrix_utils.h"#include "ceres/compressed_row_sparse_matrix.h"#include "ceres/triplet_sparse_matrix.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::vector;CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) {}CXSparse::~CXSparse() {  if (scratch_size_ > 0) {    cs_di_free(scratch_);  }}csn* CXSparse::Cholesky(cs_di* A, cs_dis* symbolic_factor) {  return cs_di_chol(A, symbolic_factor);}void CXSparse::Solve(cs_dis* symbolic_factor, csn* numeric_factor, double* b) {  // Make sure we have enough scratch space available.  const int num_cols = numeric_factor->L->n;  if (scratch_size_ < num_cols) {    if (scratch_size_ > 0) {      cs_di_free(scratch_);    }    scratch_ =        reinterpret_cast<CS_ENTRY*>(cs_di_malloc(num_cols, sizeof(CS_ENTRY)));    scratch_size_ = num_cols;  }  // When the Cholesky factor succeeded, these methods are  // guaranteed to succeeded as well. In the comments below, "x"  // refers to the scratch space.  //  // Set x = P * b.  CHECK(cs_di_ipvec(symbolic_factor->pinv, b, scratch_, num_cols));  // Set x = L \ x.  CHECK(cs_di_lsolve(numeric_factor->L, scratch_));  // Set x = L' \ x.  CHECK(cs_di_ltsolve(numeric_factor->L, scratch_));  // Set b = P' * x.  CHECK(cs_di_pvec(symbolic_factor->pinv, scratch_, b, num_cols));}bool CXSparse::SolveCholesky(cs_di* lhs, double* rhs_and_solution) {  return cs_cholsol(1, lhs, rhs_and_solution);}cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) {  // order = 1 for Cholesky factor.  return cs_schol(1, A);}cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) {  // order = 0 for Natural ordering.  return cs_schol(0, A);}cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,                                       const vector<int>& row_blocks,                                       const vector<int>& col_blocks) {  const int num_row_blocks = row_blocks.size();  const int num_col_blocks = col_blocks.size();  vector<int> block_rows;  vector<int> block_cols;  CompressedColumnScalarMatrixToBlockMatrix(      A->i, A->p, row_blocks, col_blocks, &block_rows, &block_cols);  cs_di block_matrix;  block_matrix.m = num_row_blocks;  block_matrix.n = num_col_blocks;  block_matrix.nz = -1;  block_matrix.nzmax = block_rows.size();  block_matrix.p = &block_cols[0];  block_matrix.i = &block_rows[0];  block_matrix.x = NULL;  int* ordering = cs_amd(1, &block_matrix);  vector<int> block_ordering(num_row_blocks, -1);  std::copy(ordering, ordering + num_row_blocks, &block_ordering[0]);  cs_free(ordering);  vector<int> scalar_ordering;  BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering);  cs_dis* symbolic_factor =      reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis)));  symbolic_factor->pinv = cs_pinv(&scalar_ordering[0], A->n);  cs* permuted_A = cs_symperm(A, symbolic_factor->pinv, 0);  symbolic_factor->parent = cs_etree(permuted_A, 0);  int* postordering = cs_post(symbolic_factor->parent, A->n);  int* column_counts =      cs_counts(permuted_A, symbolic_factor->parent, postordering, 0);  cs_free(postordering);  cs_spfree(permuted_A);  symbolic_factor->cp = (int*)cs_malloc(A->n + 1, sizeof(int));  symbolic_factor->lnz = cs_cumsum(symbolic_factor->cp, column_counts, A->n);  symbolic_factor->unz = symbolic_factor->lnz;  cs_free(column_counts);  if (symbolic_factor->lnz < 0) {    cs_sfree(symbolic_factor);    symbolic_factor = NULL;  }  return symbolic_factor;}cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) {  cs_di At;  At.m = A->num_cols();  At.n = A->num_rows();  At.nz = -1;  At.nzmax = A->num_nonzeros();  At.p = A->mutable_rows();  At.i = A->mutable_cols();  At.x = A->mutable_values();  return At;}cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) {  cs_di_sparse tsm_wrapper;  tsm_wrapper.nzmax = tsm->num_nonzeros();  tsm_wrapper.nz = tsm->num_nonzeros();  tsm_wrapper.m = tsm->num_rows();  tsm_wrapper.n = tsm->num_cols();  tsm_wrapper.p = tsm->mutable_cols();  tsm_wrapper.i = tsm->mutable_rows();  tsm_wrapper.x = tsm->mutable_values();  return cs_compress(&tsm_wrapper);}void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) {  int* cs_ordering = cs_amd(1, A);  std::copy(cs_ordering, cs_ordering + A->m, ordering);  cs_free(cs_ordering);}cs_di* CXSparse::TransposeMatrix(cs_di* A) { return cs_di_transpose(A, 1); }cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) {  return cs_di_multiply(A, B);}void CXSparse::Free(cs_di* sparse_matrix) { cs_di_spfree(sparse_matrix); }void CXSparse::Free(cs_dis* symbolic_factor) { cs_di_sfree(symbolic_factor); }void CXSparse::Free(csn* numeric_factor) { cs_di_nfree(numeric_factor); }std::unique_ptr<SparseCholesky> CXSparseCholesky::Create(    const OrderingType ordering_type) {  return std::unique_ptr<SparseCholesky>(new CXSparseCholesky(ordering_type));}CompressedRowSparseMatrix::StorageType CXSparseCholesky::StorageType() const {  return CompressedRowSparseMatrix::LOWER_TRIANGULAR;}CXSparseCholesky::CXSparseCholesky(const OrderingType ordering_type)    : ordering_type_(ordering_type),      symbolic_factor_(NULL),      numeric_factor_(NULL) {}CXSparseCholesky::~CXSparseCholesky() {  FreeSymbolicFactorization();  FreeNumericFactorization();}LinearSolverTerminationType CXSparseCholesky::Factorize(    CompressedRowSparseMatrix* lhs, std::string* message) {  CHECK_EQ(lhs->storage_type(), StorageType());  if (lhs == NULL) {    *message = "Failure: Input lhs is NULL.";    return LINEAR_SOLVER_FATAL_ERROR;  }  cs_di cs_lhs = cs_.CreateSparseMatrixTransposeView(lhs);  if (symbolic_factor_ == NULL) {    if (ordering_type_ == NATURAL) {      symbolic_factor_ = cs_.AnalyzeCholeskyWithNaturalOrdering(&cs_lhs);    } else {      if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {        symbolic_factor_ = cs_.BlockAnalyzeCholesky(            &cs_lhs, lhs->col_blocks(), lhs->row_blocks());      } else {        symbolic_factor_ = cs_.AnalyzeCholesky(&cs_lhs);      }    }    if (symbolic_factor_ == NULL) {      *message = "CXSparse Failure : Symbolic factorization failed.";      return LINEAR_SOLVER_FATAL_ERROR;    }  }  FreeNumericFactorization();  numeric_factor_ = cs_.Cholesky(&cs_lhs, symbolic_factor_);  if (numeric_factor_ == NULL) {    *message = "CXSparse Failure : Numeric factorization failed.";    return LINEAR_SOLVER_FAILURE;  }  return LINEAR_SOLVER_SUCCESS;}LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs,                                                    double* solution,                                                    std::string* message) {  CHECK(numeric_factor_ != NULL)      << "Solve called without a call to Factorize first.";  const int num_cols = numeric_factor_->L->n;  memcpy(solution, rhs, num_cols * sizeof(*solution));  cs_.Solve(symbolic_factor_, numeric_factor_, solution);  return LINEAR_SOLVER_SUCCESS;}void CXSparseCholesky::FreeSymbolicFactorization() {  if (symbolic_factor_ != NULL) {    cs_.Free(symbolic_factor_);    symbolic_factor_ = NULL;  }}void CXSparseCholesky::FreeNumericFactorization() {  if (numeric_factor_ != NULL) {    cs_.Free(numeric_factor_);    numeric_factor_ = NULL;  }}}  // namespace internal}  // namespace ceres#endif  // CERES_NO_CXSPARSE
 |