| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/covariance.h"
 
- #include <algorithm>
 
- #include <cstdint>
 
- #include <cmath>
 
- #include <map>
 
- #include <memory>
 
- #include <utility>
 
- #include "ceres/autodiff_cost_function.h"
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/covariance_impl.h"
 
- #include "ceres/local_parameterization.h"
 
- #include "ceres/map_util.h"
 
- #include "ceres/problem_impl.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::make_pair;
 
- using std::map;
 
- using std::pair;
 
- using std::vector;
 
- class UnaryCostFunction: public CostFunction {
 
-  public:
 
-   UnaryCostFunction(const int num_residuals,
 
-                     const int32_t parameter_block_size,
 
-                     const double* jacobian)
 
-       : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) {
 
-     set_num_residuals(num_residuals);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block_size);
 
-   }
 
-   bool Evaluate(double const* const* parameters,
 
-                 double* residuals,
 
-                 double** jacobians) const final {
 
-     for (int i = 0; i < num_residuals(); ++i) {
 
-       residuals[i] = 1;
 
-     }
 
-     if (jacobians == NULL) {
 
-       return true;
 
-     }
 
-     if (jacobians[0] != NULL) {
 
-       copy(jacobian_.begin(), jacobian_.end(), jacobians[0]);
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   vector<double> jacobian_;
 
- };
 
- class BinaryCostFunction: public CostFunction {
 
-  public:
 
-   BinaryCostFunction(const int num_residuals,
 
-                      const int32_t parameter_block1_size,
 
-                      const int32_t parameter_block2_size,
 
-                      const double* jacobian1,
 
-                      const double* jacobian2)
 
-       : jacobian1_(jacobian1,
 
-                    jacobian1 + num_residuals * parameter_block1_size),
 
-         jacobian2_(jacobian2,
 
-                    jacobian2 + num_residuals * parameter_block2_size) {
 
-     set_num_residuals(num_residuals);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
 
-     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
 
-   }
 
-   bool Evaluate(double const* const* parameters,
 
-                 double* residuals,
 
-                 double** jacobians) const final {
 
-     for (int i = 0; i < num_residuals(); ++i) {
 
-       residuals[i] = 2;
 
-     }
 
-     if (jacobians == NULL) {
 
-       return true;
 
-     }
 
-     if (jacobians[0] != NULL) {
 
-       copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]);
 
-     }
 
-     if (jacobians[1] != NULL) {
 
-       copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]);
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   vector<double> jacobian1_;
 
-   vector<double> jacobian2_;
 
- };
 
- // x_plus_delta = delta * x;
 
- class PolynomialParameterization : public LocalParameterization {
 
-  public:
 
-   virtual ~PolynomialParameterization() {}
 
-   bool Plus(const double* x,
 
-             const double* delta,
 
-             double* x_plus_delta) const final {
 
-     x_plus_delta[0] = delta[0] * x[0];
 
-     x_plus_delta[1] = delta[0] * x[1];
 
-     return true;
 
-   }
 
-   bool ComputeJacobian(const double* x, double* jacobian) const final {
 
-     jacobian[0] = x[0];
 
-     jacobian[1] = x[1];
 
-     return true;
 
-   }
 
-   int GlobalSize() const final { return 2; }
 
-   int LocalSize() const final { return 1; }
 
- };
 
- TEST(CovarianceImpl, ComputeCovarianceSparsity) {
 
-   double parameters[10];
 
-   double* block1 = parameters;
 
-   double* block2 = block1 + 1;
 
-   double* block3 = block2 + 2;
 
-   double* block4 = block3 + 3;
 
-   ProblemImpl problem;
 
-   // Add in random order
 
-   Vector junk_jacobian = Vector::Zero(10);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 3, junk_jacobian.data()), NULL, block3);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2);
 
-   // Sparsity pattern
 
-   //
 
-   // Note that the problem structure does not imply this sparsity
 
-   // pattern since all the residual blocks are unary. But the
 
-   // ComputeCovarianceSparsity function in its current incarnation
 
-   // does not pay attention to this fact and only looks at the
 
-   // parameter block pairs that the user provides.
 
-   //
 
-   //  X . . . . . X X X X
 
-   //  . X X X X X . . . .
 
-   //  . X X X X X . . . .
 
-   //  . . . X X X . . . .
 
-   //  . . . X X X . . . .
 
-   //  . . . X X X . . . .
 
-   //  . . . . . . X X X X
 
-   //  . . . . . . X X X X
 
-   //  . . . . . . X X X X
 
-   //  . . . . . . X X X X
 
-   int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40};
 
-   int expected_cols[] = {0, 6, 7, 8, 9,
 
-                          1, 2, 3, 4, 5,
 
-                          1, 2, 3, 4, 5,
 
-                          3, 4, 5,
 
-                          3, 4, 5,
 
-                          3, 4, 5,
 
-                          6, 7, 8, 9,
 
-                          6, 7, 8, 9,
 
-                          6, 7, 8, 9,
 
-                          6, 7, 8, 9};
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(make_pair(block1, block1));
 
-   covariance_blocks.push_back(make_pair(block4, block4));
 
-   covariance_blocks.push_back(make_pair(block2, block2));
 
-   covariance_blocks.push_back(make_pair(block3, block3));
 
-   covariance_blocks.push_back(make_pair(block2, block3));
 
-   covariance_blocks.push_back(make_pair(block4, block1));  // reversed
 
-   Covariance::Options options;
 
-   CovarianceImpl covariance_impl(options);
 
-   EXPECT_TRUE(covariance_impl
 
-               .ComputeCovarianceSparsity(covariance_blocks, &problem));
 
-   const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix();
 
-   EXPECT_EQ(crsm->num_rows(), 10);
 
-   EXPECT_EQ(crsm->num_cols(), 10);
 
-   EXPECT_EQ(crsm->num_nonzeros(), 40);
 
-   const int* rows = crsm->rows();
 
-   for (int r = 0; r < crsm->num_rows() + 1; ++r) {
 
-     EXPECT_EQ(rows[r], expected_rows[r])
 
-         << r << " "
 
-         << rows[r] << " "
 
-         << expected_rows[r];
 
-   }
 
-   const int* cols = crsm->cols();
 
-   for (int c = 0; c < crsm->num_nonzeros(); ++c) {
 
-     EXPECT_EQ(cols[c], expected_cols[c])
 
-         << c << " "
 
-         << cols[c] << " "
 
-         << expected_cols[c];
 
-   }
 
- }
 
- TEST(CovarianceImpl, ComputeCovarianceSparsityWithConstantParameterBlock) {
 
-   double parameters[10];
 
-   double* block1 = parameters;
 
-   double* block2 = block1 + 1;
 
-   double* block3 = block2 + 2;
 
-   double* block4 = block3 + 3;
 
-   ProblemImpl problem;
 
-   // Add in random order
 
-   Vector junk_jacobian = Vector::Zero(10);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 3, junk_jacobian.data()), NULL, block3);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2);
 
-   problem.SetParameterBlockConstant(block3);
 
-   // Sparsity pattern
 
-   //
 
-   // Note that the problem structure does not imply this sparsity
 
-   // pattern since all the residual blocks are unary. But the
 
-   // ComputeCovarianceSparsity function in its current incarnation
 
-   // does not pay attention to this fact and only looks at the
 
-   // parameter block pairs that the user provides.
 
-   //
 
-   //  X . . X X X X
 
-   //  . X X . . . .
 
-   //  . X X . . . .
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   int expected_rows[] = {0, 5, 7, 9, 13, 17, 21, 25};
 
-   int expected_cols[] = {0, 3, 4, 5, 6,
 
-                          1, 2,
 
-                          1, 2,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6};
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(make_pair(block1, block1));
 
-   covariance_blocks.push_back(make_pair(block4, block4));
 
-   covariance_blocks.push_back(make_pair(block2, block2));
 
-   covariance_blocks.push_back(make_pair(block3, block3));
 
-   covariance_blocks.push_back(make_pair(block2, block3));
 
-   covariance_blocks.push_back(make_pair(block4, block1));  // reversed
 
-   Covariance::Options options;
 
-   CovarianceImpl covariance_impl(options);
 
-   EXPECT_TRUE(covariance_impl
 
-               .ComputeCovarianceSparsity(covariance_blocks, &problem));
 
-   const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix();
 
-   EXPECT_EQ(crsm->num_rows(), 7);
 
-   EXPECT_EQ(crsm->num_cols(), 7);
 
-   EXPECT_EQ(crsm->num_nonzeros(), 25);
 
-   const int* rows = crsm->rows();
 
-   for (int r = 0; r < crsm->num_rows() + 1; ++r) {
 
-     EXPECT_EQ(rows[r], expected_rows[r])
 
-         << r << " "
 
-         << rows[r] << " "
 
-         << expected_rows[r];
 
-   }
 
-   const int* cols = crsm->cols();
 
-   for (int c = 0; c < crsm->num_nonzeros(); ++c) {
 
-     EXPECT_EQ(cols[c], expected_cols[c])
 
-         << c << " "
 
-         << cols[c] << " "
 
-         << expected_cols[c];
 
-   }
 
- }
 
- TEST(CovarianceImpl, ComputeCovarianceSparsityWithFreeParameterBlock) {
 
-   double parameters[10];
 
-   double* block1 = parameters;
 
-   double* block2 = block1 + 1;
 
-   double* block3 = block2 + 2;
 
-   double* block4 = block3 + 3;
 
-   ProblemImpl problem;
 
-   // Add in random order
 
-   Vector junk_jacobian = Vector::Zero(10);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4);
 
-   problem.AddParameterBlock(block3, 3);
 
-   problem.AddResidualBlock(
 
-       new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2);
 
-   // Sparsity pattern
 
-   //
 
-   // Note that the problem structure does not imply this sparsity
 
-   // pattern since all the residual blocks are unary. But the
 
-   // ComputeCovarianceSparsity function in its current incarnation
 
-   // does not pay attention to this fact and only looks at the
 
-   // parameter block pairs that the user provides.
 
-   //
 
-   //  X . . X X X X
 
-   //  . X X . . . .
 
-   //  . X X . . . .
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   //  . . . X X X X
 
-   int expected_rows[] = {0, 5, 7, 9, 13, 17, 21, 25};
 
-   int expected_cols[] = {0, 3, 4, 5, 6,
 
-                          1, 2,
 
-                          1, 2,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6,
 
-                          3, 4, 5, 6};
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(make_pair(block1, block1));
 
-   covariance_blocks.push_back(make_pair(block4, block4));
 
-   covariance_blocks.push_back(make_pair(block2, block2));
 
-   covariance_blocks.push_back(make_pair(block3, block3));
 
-   covariance_blocks.push_back(make_pair(block2, block3));
 
-   covariance_blocks.push_back(make_pair(block4, block1));  // reversed
 
-   Covariance::Options options;
 
-   CovarianceImpl covariance_impl(options);
 
-   EXPECT_TRUE(covariance_impl
 
-               .ComputeCovarianceSparsity(covariance_blocks, &problem));
 
-   const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix();
 
-   EXPECT_EQ(crsm->num_rows(), 7);
 
-   EXPECT_EQ(crsm->num_cols(), 7);
 
-   EXPECT_EQ(crsm->num_nonzeros(), 25);
 
-   const int* rows = crsm->rows();
 
-   for (int r = 0; r < crsm->num_rows() + 1; ++r) {
 
-     EXPECT_EQ(rows[r], expected_rows[r])
 
-         << r << " "
 
-         << rows[r] << " "
 
-         << expected_rows[r];
 
-   }
 
-   const int* cols = crsm->cols();
 
-   for (int c = 0; c < crsm->num_nonzeros(); ++c) {
 
-     EXPECT_EQ(cols[c], expected_cols[c])
 
-         << c << " "
 
-         << cols[c] << " "
 
-         << expected_cols[c];
 
-   }
 
- }
 
- class CovarianceTest : public ::testing::Test {
 
-  protected:
 
-   typedef map<const double*, pair<int, int>> BoundsMap;
 
-   void SetUp() override {
 
-     double* x = parameters_;
 
-     double* y = x + 2;
 
-     double* z = y + 3;
 
-     x[0] = 1;
 
-     x[1] = 1;
 
-     y[0] = 2;
 
-     y[1] = 2;
 
-     y[2] = 2;
 
-     z[0] = 3;
 
-     {
 
-       double jacobian[] = { 1.0, 0.0, 0.0, 1.0};
 
-       problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x);
 
-     }
 
-     {
 
-       double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 };
 
-       problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y);
 
-     }
 
-     {
 
-       double jacobian = 5.0;
 
-       problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian),
 
-                                 NULL,
 
-                                 z);
 
-     }
 
-     {
 
-       double jacobian1[] = { 1.0, 2.0, 3.0 };
 
-       double jacobian2[] = { -5.0, -6.0 };
 
-       problem_.AddResidualBlock(
 
-           new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2),
 
-           NULL,
 
-           y,
 
-           x);
 
-     }
 
-     {
 
-       double jacobian1[] = {2.0 };
 
-       double jacobian2[] = { 3.0, -2.0 };
 
-       problem_.AddResidualBlock(
 
-           new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2),
 
-           NULL,
 
-           z,
 
-           x);
 
-     }
 
-     all_covariance_blocks_.push_back(make_pair(x, x));
 
-     all_covariance_blocks_.push_back(make_pair(y, y));
 
-     all_covariance_blocks_.push_back(make_pair(z, z));
 
-     all_covariance_blocks_.push_back(make_pair(x, y));
 
-     all_covariance_blocks_.push_back(make_pair(x, z));
 
-     all_covariance_blocks_.push_back(make_pair(y, z));
 
-     column_bounds_[x] = make_pair(0, 2);
 
-     column_bounds_[y] = make_pair(2, 5);
 
-     column_bounds_[z] = make_pair(5, 6);
 
-   }
 
-   // Computes covariance in ambient space.
 
-   void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options,
 
-                                          const double* expected_covariance) {
 
-     ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace(
 
-         options,
 
-         true,  // ambient
 
-         expected_covariance);
 
-   }
 
-   // Computes covariance in tangent space.
 
-   void ComputeAndCompareCovarianceBlocksInTangentSpace(
 
-                                          const Covariance::Options& options,
 
-                                          const double* expected_covariance) {
 
-     ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace(
 
-         options,
 
-         false,  // tangent
 
-         expected_covariance);
 
-   }
 
-   void ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace(
 
-       const Covariance::Options& options,
 
-       bool lift_covariance_to_ambient_space,
 
-       const double* expected_covariance) {
 
-     // Generate all possible combination of block pairs and check if the
 
-     // covariance computation is correct.
 
-     for (int i = 0; i <= 64; ++i) {
 
-       vector<pair<const double*, const double*>> covariance_blocks;
 
-       if (i & 1) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[0]);
 
-       }
 
-       if (i & 2) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[1]);
 
-       }
 
-       if (i & 4) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[2]);
 
-       }
 
-       if (i & 8) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[3]);
 
-       }
 
-       if (i & 16) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[4]);
 
-       }
 
-       if (i & 32) {
 
-         covariance_blocks.push_back(all_covariance_blocks_[5]);
 
-       }
 
-       Covariance covariance(options);
 
-       EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_));
 
-       for (int i = 0; i < covariance_blocks.size(); ++i) {
 
-         const double* block1 = covariance_blocks[i].first;
 
-         const double* block2 = covariance_blocks[i].second;
 
-         // block1, block2
 
-         GetCovarianceBlockAndCompare(block1,
 
-                                      block2,
 
-                                      lift_covariance_to_ambient_space,
 
-                                      covariance,
 
-                                      expected_covariance);
 
-         // block2, block1
 
-         GetCovarianceBlockAndCompare(block2,
 
-                                      block1,
 
-                                      lift_covariance_to_ambient_space,
 
-                                      covariance,
 
-                                      expected_covariance);
 
-       }
 
-     }
 
-   }
 
-   void GetCovarianceBlockAndCompare(const double* block1,
 
-                                     const double* block2,
 
-                                     bool lift_covariance_to_ambient_space,
 
-                                     const Covariance& covariance,
 
-                                     const double* expected_covariance) {
 
-     const BoundsMap& column_bounds = lift_covariance_to_ambient_space ?
 
-         column_bounds_ : local_column_bounds_;
 
-     const int row_begin = FindOrDie(column_bounds, block1).first;
 
-     const int row_end = FindOrDie(column_bounds, block1).second;
 
-     const int col_begin = FindOrDie(column_bounds, block2).first;
 
-     const int col_end = FindOrDie(column_bounds, block2).second;
 
-     Matrix actual(row_end - row_begin, col_end - col_begin);
 
-     if (lift_covariance_to_ambient_space) {
 
-       EXPECT_TRUE(covariance.GetCovarianceBlock(block1,
 
-                                                 block2,
 
-                                                 actual.data()));
 
-     } else {
 
-       EXPECT_TRUE(covariance.GetCovarianceBlockInTangentSpace(block1,
 
-                                                               block2,
 
-                                                               actual.data()));
 
-     }
 
-     int dof = 0;  // degrees of freedom = sum of LocalSize()s
 
-     for (const auto& bound : column_bounds) {
 
-       dof = std::max(dof, bound.second.second);
 
-     }
 
-     ConstMatrixRef expected(expected_covariance, dof, dof);
 
-     double diff_norm = (expected.block(row_begin,
 
-                                        col_begin,
 
-                                        row_end - row_begin,
 
-                                        col_end - col_begin) - actual).norm();
 
-     diff_norm /= (row_end - row_begin) * (col_end - col_begin);
 
-     const double kTolerance = 1e-5;
 
-     EXPECT_NEAR(diff_norm, 0.0, kTolerance)
 
-         << "rows: " << row_begin << " " << row_end << "  "
 
-         << "cols: " << col_begin << " " << col_end << "  "
 
-         << "\n\n expected: \n " << expected.block(row_begin,
 
-                                                   col_begin,
 
-                                                   row_end - row_begin,
 
-                                                   col_end - col_begin)
 
-         << "\n\n actual: \n " << actual
 
-         << "\n\n full expected: \n" << expected;
 
-   }
 
-   double parameters_[6];
 
-   Problem problem_;
 
-   vector<pair<const double*, const double*>> all_covariance_blocks_;
 
-   BoundsMap column_bounds_;
 
-   BoundsMap local_column_bounds_;
 
- };
 
- TEST_F(CovarianceTest, NormalBehavior) {
 
-   // J
 
-   //
 
-   //   1  0  0  0  0  0
 
-   //   0  1  0  0  0  0
 
-   //   0  0  2  0  0  0
 
-   //   0  0  0  2  0  0
 
-   //   0  0  0  0  2  0
 
-   //   0  0  0  0  0  5
 
-   //  -5 -6  1  2  3  0
 
-   //   3 -2  0  0  0  2
 
-   // J'J
 
-   //
 
-   //   35  24 -5 -10 -15  6
 
-   //   24  41 -6 -12 -18 -4
 
-   //   -5  -6  5   2   3  0
 
-   //  -10 -12  2   8   6  0
 
-   //  -15 -18  3   6  13  0
 
-   //    6  -4  0   0   0 29
 
-   // inv(J'J) computed using octave.
 
-   double expected_covariance[] = {
 
-      7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT
 
-     -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT
 
-      1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT
 
-      3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT
 
-      5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT
 
-     -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT
 
-   };
 
-   Covariance::Options options;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- #ifdef CERES_USE_OPENMP
 
- TEST_F(CovarianceTest, ThreadedNormalBehavior) {
 
-   // J
 
-   //
 
-   //   1  0  0  0  0  0
 
-   //   0  1  0  0  0  0
 
-   //   0  0  2  0  0  0
 
-   //   0  0  0  2  0  0
 
-   //   0  0  0  0  2  0
 
-   //   0  0  0  0  0  5
 
-   //  -5 -6  1  2  3  0
 
-   //   3 -2  0  0  0  2
 
-   // J'J
 
-   //
 
-   //   35  24 -5 -10 -15  6
 
-   //   24  41 -6 -12 -18 -4
 
-   //   -5  -6  5   2   3  0
 
-   //  -10 -12  2   8   6  0
 
-   //  -15 -18  3   6  13  0
 
-   //    6  -4  0   0   0 29
 
-   // inv(J'J) computed using octave.
 
-   double expected_covariance[] = {
 
-      7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT
 
-     -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT
 
-      1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT
 
-      3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT
 
-      5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT
 
-     -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT
 
-   };
 
-   Covariance::Options options;
 
-   options.num_threads = 4;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- #endif  // CERES_USE_OPENMP
 
- TEST_F(CovarianceTest, ConstantParameterBlock) {
 
-   problem_.SetParameterBlockConstant(parameters_);
 
-   // J
 
-   //
 
-   //  0  0  0  0  0  0
 
-   //  0  0  0  0  0  0
 
-   //  0  0  2  0  0  0
 
-   //  0  0  0  2  0  0
 
-   //  0  0  0  0  2  0
 
-   //  0  0  0  0  0  5
 
-   //  0  0  1  2  3  0
 
-   //  0  0  0  0  0  2
 
-   // J'J
 
-   //
 
-   //  0  0  0  0  0  0
 
-   //  0  0  0  0  0  0
 
-   //  0  0  5  2  3  0
 
-   //  0  0  2  8  6  0
 
-   //  0  0  3  6 13  0
 
-   //  0  0  0  0  0 29
 
-   // pinv(J'J) computed using octave.
 
-   double expected_covariance[] = {
 
-               0,            0,            0,            0,            0,            0,  // NOLINT
 
-               0,            0,            0,            0,            0,            0,  // NOLINT
 
-               0,            0,      0.23611,     -0.02778,     -0.04167,     -0.00000,  // NOLINT
 
-               0,            0,     -0.02778,      0.19444,     -0.08333,     -0.00000,  // NOLINT
 
-               0,            0,     -0.04167,     -0.08333,      0.12500,     -0.00000,  // NOLINT
 
-               0,            0,     -0.00000,     -0.00000,     -0.00000,      0.03448   // NOLINT
 
-   };
 
-   Covariance::Options options;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, LocalParameterization) {
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   problem_.SetParameterization(x, new PolynomialParameterization);
 
-   vector<int> subset;
 
-   subset.push_back(2);
 
-   problem_.SetParameterization(y, new SubsetParameterization(3, subset));
 
-   // Raw Jacobian: J
 
-   //
 
-   //   1   0  0  0  0  0
 
-   //   0   1  0  0  0  0
 
-   //   0   0  2  0  0  0
 
-   //   0   0  0  2  0  0
 
-   //   0   0  0  0  2  0
 
-   //   0   0  0  0  0  5
 
-   //  -5  -6  1  2  3  0
 
-   //   3  -2  0  0  0  2
 
-   // Local to global jacobian: A
 
-   //
 
-   //  1   0   0   0
 
-   //  1   0   0   0
 
-   //  0   1   0   0
 
-   //  0   0   1   0
 
-   //  0   0   0   0
 
-   //  0   0   0   1
 
-   // A * inv((J*A)'*(J*A)) * A'
 
-   // Computed using octave.
 
-   double expected_covariance[] = {
 
-     0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122,
 
-     0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122,
 
-     0.02158,   0.02158,   0.24860,  -0.00281,   0.00000,  -0.00149,
 
-     0.04316,   0.04316,  -0.00281,   0.24439,   0.00000,  -0.00298,
 
-     0.00000,   0.00000,   0.00000,   0.00000,   0.00000,   0.00000,
 
-    -0.00122,  -0.00122,  -0.00149,  -0.00298,   0.00000,   0.03457
 
-   };
 
-   Covariance::Options options;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, LocalParameterizationInTangentSpace) {
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   double* z = y + 3;
 
-   problem_.SetParameterization(x, new PolynomialParameterization);
 
-   vector<int> subset;
 
-   subset.push_back(2);
 
-   problem_.SetParameterization(y, new SubsetParameterization(3, subset));
 
-   local_column_bounds_[x] = make_pair(0, 1);
 
-   local_column_bounds_[y] = make_pair(1, 3);
 
-   local_column_bounds_[z] = make_pair(3, 4);
 
-   // Raw Jacobian: J
 
-   //
 
-   //   1   0  0  0  0  0
 
-   //   0   1  0  0  0  0
 
-   //   0   0  2  0  0  0
 
-   //   0   0  0  2  0  0
 
-   //   0   0  0  0  2  0
 
-   //   0   0  0  0  0  5
 
-   //  -5  -6  1  2  3  0
 
-   //   3  -2  0  0  0  2
 
-   // Local to global jacobian: A
 
-   //
 
-   //  1   0   0   0
 
-   //  1   0   0   0
 
-   //  0   1   0   0
 
-   //  0   0   1   0
 
-   //  0   0   0   0
 
-   //  0   0   0   1
 
-   // inv((J*A)'*(J*A))
 
-   // Computed using octave.
 
-   double expected_covariance[] = {
 
-     0.01766,   0.02158,   0.04316,   -0.00122,
 
-     0.02158,   0.24860,  -0.00281,   -0.00149,
 
-     0.04316,  -0.00281,   0.24439,   -0.00298,
 
-    -0.00122,  -0.00149,  -0.00298,    0.03457  // NOLINT
 
-   };
 
-   Covariance::Options options;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, LocalParameterizationInTangentSpaceWithConstantBlocks) {
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   double* z = y + 3;
 
-   problem_.SetParameterization(x, new PolynomialParameterization);
 
-   problem_.SetParameterBlockConstant(x);
 
-   vector<int> subset;
 
-   subset.push_back(2);
 
-   problem_.SetParameterization(y, new SubsetParameterization(3, subset));
 
-   problem_.SetParameterBlockConstant(y);
 
-   local_column_bounds_[x] = make_pair(0, 1);
 
-   local_column_bounds_[y] = make_pair(1, 3);
 
-   local_column_bounds_[z] = make_pair(3, 4);
 
-   // Raw Jacobian: J
 
-   //
 
-   //   1   0  0  0  0  0
 
-   //   0   1  0  0  0  0
 
-   //   0   0  2  0  0  0
 
-   //   0   0  0  2  0  0
 
-   //   0   0  0  0  2  0
 
-   //   0   0  0  0  0  5
 
-   //  -5  -6  1  2  3  0
 
-   //   3  -2  0  0  0  2
 
-   // Local to global jacobian: A
 
-   //
 
-   //  0   0   0   0
 
-   //  0   0   0   0
 
-   //  0   0   0   0
 
-   //  0   0   0   0
 
-   //  0   0   0   0
 
-   //  0   0   0   1
 
-   // pinv((J*A)'*(J*A))
 
-   // Computed using octave.
 
-   double expected_covariance[] = {
 
-     0.0, 0.0, 0.0, 0.0,
 
-     0.0, 0.0, 0.0, 0.0,
 
-     0.0, 0.0, 0.0, 0.0,
 
-     0.0, 0.0, 0.0, 0.034482 // NOLINT
 
-   };
 
-   Covariance::Options options;
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, TruncatedRank) {
 
-   // J
 
-   //
 
-   //   1  0  0  0  0  0
 
-   //   0  1  0  0  0  0
 
-   //   0  0  2  0  0  0
 
-   //   0  0  0  2  0  0
 
-   //   0  0  0  0  2  0
 
-   //   0  0  0  0  0  5
 
-   //  -5 -6  1  2  3  0
 
-   //   3 -2  0  0  0  2
 
-   // J'J
 
-   //
 
-   //   35  24 -5 -10 -15  6
 
-   //   24  41 -6 -12 -18 -4
 
-   //   -5  -6  5   2   3  0
 
-   //  -10 -12  2   8   6  0
 
-   //  -15 -18  3   6  13  0
 
-   //    6  -4  0   0   0 29
 
-   // 3.4142 is the smallest eigen value of J'J. The following matrix
 
-   // was obtained by dropping the eigenvector corresponding to this
 
-   // eigenvalue.
 
-   double expected_covariance[] = {
 
-      5.4135e-02,  -3.5121e-02,   1.7257e-04,   3.4514e-04,   5.1771e-04,  -1.6076e-02,  // NOLINT
 
-     -3.5121e-02,   3.8667e-02,  -1.9288e-03,  -3.8576e-03,  -5.7864e-03,   1.2549e-02,  // NOLINT
 
-      1.7257e-04,  -1.9288e-03,   2.3235e-01,  -3.5297e-02,  -5.2946e-02,  -3.3329e-04,  // NOLINT
 
-      3.4514e-04,  -3.8576e-03,  -3.5297e-02,   1.7941e-01,  -1.0589e-01,  -6.6659e-04,  // NOLINT
 
-      5.1771e-04,  -5.7864e-03,  -5.2946e-02,  -1.0589e-01,   9.1162e-02,  -9.9988e-04,  // NOLINT
 
-     -1.6076e-02,   1.2549e-02,  -3.3329e-04,  -6.6659e-04,  -9.9988e-04,   3.9539e-02   // NOLINT
 
-   };
 
-   {
 
-     Covariance::Options options;
 
-     options.algorithm_type = DENSE_SVD;
 
-     // Force dropping of the smallest eigenvector.
 
-     options.null_space_rank = 1;
 
-     ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   }
 
-   {
 
-     Covariance::Options options;
 
-     options.algorithm_type = DENSE_SVD;
 
-     // Force dropping of the smallest eigenvector via the ratio but
 
-     // automatic truncation.
 
-     options.min_reciprocal_condition_number = 0.044494;
 
-     options.null_space_rank = -1;
 
-     ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   }
 
- }
 
- TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParameters) {
 
-   Covariance::Options options;
 
-   Covariance covariance(options);
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   double* z = y + 3;
 
-   vector<const double*> parameter_blocks;
 
-   parameter_blocks.push_back(x);
 
-   parameter_blocks.push_back(y);
 
-   parameter_blocks.push_back(z);
 
-   covariance.Compute(parameter_blocks, &problem_);
 
-   double expected_covariance[36];
 
-   covariance.GetCovarianceMatrix(parameter_blocks, expected_covariance);
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParametersThreaded) {
 
-   Covariance::Options options;
 
-   options.num_threads = 4;
 
-   Covariance covariance(options);
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   double* z = y + 3;
 
-   vector<const double*> parameter_blocks;
 
-   parameter_blocks.push_back(x);
 
-   parameter_blocks.push_back(y);
 
-   parameter_blocks.push_back(z);
 
-   covariance.Compute(parameter_blocks, &problem_);
 
-   double expected_covariance[36];
 
-   covariance.GetCovarianceMatrix(parameter_blocks, expected_covariance);
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParametersInTangentSpace) {
 
-   Covariance::Options options;
 
-   Covariance covariance(options);
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   double* z = y + 3;
 
-   problem_.SetParameterization(x, new PolynomialParameterization);
 
-   vector<int> subset;
 
-   subset.push_back(2);
 
-   problem_.SetParameterization(y, new SubsetParameterization(3, subset));
 
-   local_column_bounds_[x] = make_pair(0, 1);
 
-   local_column_bounds_[y] = make_pair(1, 3);
 
-   local_column_bounds_[z] = make_pair(3, 4);
 
-   vector<const double*> parameter_blocks;
 
-   parameter_blocks.push_back(x);
 
-   parameter_blocks.push_back(y);
 
-   parameter_blocks.push_back(z);
 
-   covariance.Compute(parameter_blocks, &problem_);
 
-   double expected_covariance[16];
 
-   covariance.GetCovarianceMatrixInTangentSpace(parameter_blocks,
 
-                                                expected_covariance);
 
- #ifndef CERES_NO_SUITESPARSE
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- #endif
 
-   options.algorithm_type = DENSE_SVD;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
-   options.algorithm_type = SPARSE_QR;
 
-   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
 
-   ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance);
 
- }
 
- TEST_F(CovarianceTest, ComputeCovarianceFailure) {
 
-   Covariance::Options options;
 
-   Covariance covariance(options);
 
-   double* x = parameters_;
 
-   double* y = x + 2;
 
-   vector<const double*> parameter_blocks;
 
-   parameter_blocks.push_back(x);
 
-   parameter_blocks.push_back(x);
 
-   parameter_blocks.push_back(y);
 
-   parameter_blocks.push_back(y);
 
-   EXPECT_DEATH_IF_SUPPORTED(covariance.Compute(parameter_blocks, &problem_),
 
-                             "Covariance::Compute called with duplicate blocks "
 
-                             "at indices \\(0, 1\\) and \\(2, 3\\)");
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(make_pair(x, x));
 
-   covariance_blocks.push_back(make_pair(x, x));
 
-   covariance_blocks.push_back(make_pair(y, y));
 
-   covariance_blocks.push_back(make_pair(y, y));
 
-   EXPECT_DEATH_IF_SUPPORTED(covariance.Compute(covariance_blocks, &problem_),
 
-                             "Covariance::Compute called with duplicate blocks "
 
-                             "at indices \\(0, 1\\) and \\(2, 3\\)");
 
- }
 
- class RankDeficientCovarianceTest : public CovarianceTest {
 
-  protected:
 
-   void SetUp() final {
 
-     double* x = parameters_;
 
-     double* y = x + 2;
 
-     double* z = y + 3;
 
-     {
 
-       double jacobian[] = { 1.0, 0.0, 0.0, 1.0};
 
-       problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x);
 
-     }
 
-     {
 
-       double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
 
-       problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y);
 
-     }
 
-     {
 
-       double jacobian = 5.0;
 
-       problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian),
 
-                                 NULL,
 
-                                 z);
 
-     }
 
-     {
 
-       double jacobian1[] = { 0.0, 0.0, 0.0 };
 
-       double jacobian2[] = { -5.0, -6.0 };
 
-       problem_.AddResidualBlock(
 
-           new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2),
 
-           NULL,
 
-           y,
 
-           x);
 
-     }
 
-     {
 
-       double jacobian1[] = {2.0 };
 
-       double jacobian2[] = { 3.0, -2.0 };
 
-       problem_.AddResidualBlock(
 
-           new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2),
 
-           NULL,
 
-           z,
 
-           x);
 
-     }
 
-     all_covariance_blocks_.push_back(make_pair(x, x));
 
-     all_covariance_blocks_.push_back(make_pair(y, y));
 
-     all_covariance_blocks_.push_back(make_pair(z, z));
 
-     all_covariance_blocks_.push_back(make_pair(x, y));
 
-     all_covariance_blocks_.push_back(make_pair(x, z));
 
-     all_covariance_blocks_.push_back(make_pair(y, z));
 
-     column_bounds_[x] = make_pair(0, 2);
 
-     column_bounds_[y] = make_pair(2, 5);
 
-     column_bounds_[z] = make_pair(5, 6);
 
-   }
 
- };
 
- TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) {
 
-   // J
 
-   //
 
-   //   1  0  0  0  0  0
 
-   //   0  1  0  0  0  0
 
-   //   0  0  0  0  0  0
 
-   //   0  0  0  0  0  0
 
-   //   0  0  0  0  0  0
 
-   //   0  0  0  0  0  5
 
-   //  -5 -6  0  0  0  0
 
-   //   3 -2  0  0  0  2
 
-   // J'J
 
-   //
 
-   //  35 24  0  0  0  6
 
-   //  24 41  0  0  0 -4
 
-   //   0  0  0  0  0  0
 
-   //   0  0  0  0  0  0
 
-   //   0  0  0  0  0  0
 
-   //   6 -4  0  0  0 29
 
-   // pinv(J'J) computed using octave.
 
-   double expected_covariance[] = {
 
-      0.053998,  -0.033145,   0.000000,   0.000000,   0.000000,  -0.015744,
 
-     -0.033145,   0.045067,   0.000000,   0.000000,   0.000000,   0.013074,
 
-      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
 
-      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
 
-      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
 
-     -0.015744,   0.013074,   0.000000,   0.000000,   0.000000,   0.039543
 
-   };
 
-   Covariance::Options options;
 
-   options.algorithm_type = DENSE_SVD;
 
-   options.null_space_rank = -1;
 
-   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
 
- }
 
- struct LinearCostFunction {
 
-   template <typename T>
 
-   bool operator()(const T* x, const T* y, T* residual) const {
 
-     residual[0] = T(10.0) - *x;
 
-     residual[1] = T(5.0) - *y;
 
-     return true;
 
-   }
 
-   static CostFunction* Create() {
 
-     return new AutoDiffCostFunction<LinearCostFunction, 2, 1, 1>(
 
-         new LinearCostFunction);
 
-   }
 
- };
 
- TEST(Covariance, ZeroSizedLocalParameterizationGetCovariance) {
 
-   double x = 0.0;
 
-   double y = 1.0;
 
-   Problem problem;
 
-   problem.AddResidualBlock(LinearCostFunction::Create(), nullptr, &x, &y);
 
-   problem.SetParameterization(&y, new SubsetParameterization(1, {0}));
 
-   // J = [-1 0]
 
-   //     [ 0 0]
 
-   Covariance::Options options;
 
-   options.algorithm_type = DENSE_SVD;
 
-   Covariance covariance(options);
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(std::make_pair(&x, &x));
 
-   covariance_blocks.push_back(std::make_pair(&x, &y));
 
-   covariance_blocks.push_back(std::make_pair(&y, &x));
 
-   covariance_blocks.push_back(std::make_pair(&y, &y));
 
-   EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem));
 
-   double value = -1;
 
-   covariance.GetCovarianceBlock(&x, &x, &value);
 
-   EXPECT_NEAR(value, 1.0, std::numeric_limits<double>::epsilon());
 
-   value = -1;
 
-   covariance.GetCovarianceBlock(&x, &y, &value);
 
-   EXPECT_NEAR(value, 0.0, std::numeric_limits<double>::epsilon());
 
-   value = -1;
 
-   covariance.GetCovarianceBlock(&y, &x, &value);
 
-   EXPECT_NEAR(value, 0.0, std::numeric_limits<double>::epsilon());
 
-   value = -1;
 
-   covariance.GetCovarianceBlock(&y, &y, &value);
 
-   EXPECT_NEAR(value, 0.0, std::numeric_limits<double>::epsilon());
 
- }
 
- TEST(Covariance, ZeroSizedLocalParameterizationGetCovarianceInTangentSpace) {
 
-   double x = 0.0;
 
-   double y = 1.0;
 
-   Problem problem;
 
-   problem.AddResidualBlock(LinearCostFunction::Create(), nullptr, &x, &y);
 
-   problem.SetParameterization(&y, new SubsetParameterization(1, {0}));
 
-   // J = [-1 0]
 
-   //     [ 0 0]
 
-   Covariance::Options options;
 
-   options.algorithm_type = DENSE_SVD;
 
-   Covariance covariance(options);
 
-   vector<pair<const double*, const double*>> covariance_blocks;
 
-   covariance_blocks.push_back(std::make_pair(&x, &x));
 
-   covariance_blocks.push_back(std::make_pair(&x, &y));
 
-   covariance_blocks.push_back(std::make_pair(&y, &x));
 
-   covariance_blocks.push_back(std::make_pair(&y, &y));
 
-   EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem));
 
-   double value = -1;
 
-   covariance.GetCovarianceBlockInTangentSpace(&x, &x, &value);
 
-   EXPECT_NEAR(value, 1.0, std::numeric_limits<double>::epsilon());
 
-   value = -1;
 
-   // The following three calls, should not touch this value, since the
 
-   // tangent space is of size zero
 
-   covariance.GetCovarianceBlockInTangentSpace(&x, &y, &value);
 
-   EXPECT_EQ(value, -1);
 
-   covariance.GetCovarianceBlockInTangentSpace(&y, &x, &value);
 
-   EXPECT_EQ(value, -1);
 
-   covariance.GetCovarianceBlockInTangentSpace(&y, &y, &value);
 
-   EXPECT_EQ(value, -1);
 
- }
 
- class LargeScaleCovarianceTest : public ::testing::Test {
 
-  protected:
 
-   void SetUp() final {
 
-     num_parameter_blocks_ = 2000;
 
-     parameter_block_size_ = 5;
 
-     parameters_.reset(
 
-         new double[parameter_block_size_ * num_parameter_blocks_]);
 
-     Matrix jacobian(parameter_block_size_, parameter_block_size_);
 
-     for (int i = 0; i < num_parameter_blocks_; ++i) {
 
-       jacobian.setIdentity();
 
-       jacobian *= (i + 1);
 
-       double* block_i = parameters_.get() + i * parameter_block_size_;
 
-       problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_,
 
-                                                       parameter_block_size_,
 
-                                                       jacobian.data()),
 
-                                 NULL,
 
-                                 block_i);
 
-       for (int j = i; j < num_parameter_blocks_; ++j) {
 
-         double* block_j = parameters_.get() + j * parameter_block_size_;
 
-         all_covariance_blocks_.push_back(make_pair(block_i, block_j));
 
-       }
 
-     }
 
-   }
 
-   void ComputeAndCompare(
 
-       CovarianceAlgorithmType algorithm_type,
 
-       SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
 
-       int num_threads) {
 
-     Covariance::Options options;
 
-     options.algorithm_type = algorithm_type;
 
-     options.sparse_linear_algebra_library_type =
 
-         sparse_linear_algebra_library_type;
 
-     options.num_threads = num_threads;
 
-     Covariance covariance(options);
 
-     EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_));
 
-     Matrix expected(parameter_block_size_, parameter_block_size_);
 
-     Matrix actual(parameter_block_size_, parameter_block_size_);
 
-     const double kTolerance = 1e-16;
 
-     for (int i = 0; i < num_parameter_blocks_; ++i) {
 
-       expected.setIdentity();
 
-       expected /= (i + 1.0) * (i + 1.0);
 
-       double* block_i = parameters_.get() + i * parameter_block_size_;
 
-       covariance.GetCovarianceBlock(block_i, block_i, actual.data());
 
-       EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance)
 
-           << "block: " << i << ", " << i << "\n"
 
-           << "expected: \n" << expected << "\n"
 
-           << "actual: \n" << actual;
 
-       expected.setZero();
 
-       for (int j = i + 1; j < num_parameter_blocks_; ++j) {
 
-         double* block_j = parameters_.get() + j * parameter_block_size_;
 
-         covariance.GetCovarianceBlock(block_i, block_j, actual.data());
 
-         EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance)
 
-             << "block: " << i << ", " << j << "\n"
 
-             << "expected: \n" << expected << "\n"
 
-             << "actual: \n" << actual;
 
-       }
 
-     }
 
-   }
 
-   std::unique_ptr<double[]> parameters_;
 
-   int parameter_block_size_;
 
-   int num_parameter_blocks_;
 
-   Problem problem_;
 
-   vector<pair<const double*, const double*>> all_covariance_blocks_;
 
- };
 
- #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)
 
- TEST_F(LargeScaleCovarianceTest, Parallel) {
 
-   ComputeAndCompare(SPARSE_QR, SUITE_SPARSE, 4);
 
- }
 
- #endif  // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |