| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/compressed_row_sparse_matrix.h"#include <memory>#include <numeric>#include "ceres/casts.h"#include "ceres/crs_matrix.h"#include "ceres/internal/eigen.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/random.h"#include "ceres/triplet_sparse_matrix.h"#include "glog/logging.h"#include "gtest/gtest.h"#include "Eigen/SparseCore"namespace ceres {namespace internal {using std::vector;static void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {  EXPECT_EQ(a->num_rows(), b->num_rows());  EXPECT_EQ(a->num_cols(), b->num_cols());  int num_rows = a->num_rows();  int num_cols = a->num_cols();  for (int i = 0; i < num_cols; ++i) {    Vector x = Vector::Zero(num_cols);    x(i) = 1.0;    Vector y_a = Vector::Zero(num_rows);    Vector y_b = Vector::Zero(num_rows);    a->RightMultiply(x.data(), y_a.data());    b->RightMultiply(x.data(), y_b.data());    EXPECT_EQ((y_a - y_b).norm(), 0);  }}class CompressedRowSparseMatrixTest : public ::testing::Test { protected:  void SetUp() final {    std::unique_ptr<LinearLeastSquaresProblem> problem(        CreateLinearLeastSquaresProblemFromId(1));    CHECK(problem != nullptr);    tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));    crsm.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));    num_rows = tsm->num_rows();    num_cols = tsm->num_cols();    vector<int>* row_blocks = crsm->mutable_row_blocks();    row_blocks->resize(num_rows);    std::fill(row_blocks->begin(), row_blocks->end(), 1);    vector<int>* col_blocks = crsm->mutable_col_blocks();    col_blocks->resize(num_cols);    std::fill(col_blocks->begin(), col_blocks->end(), 1);  }  int num_rows;  int num_cols;  std::unique_ptr<TripletSparseMatrix> tsm;  std::unique_ptr<CompressedRowSparseMatrix> crsm;};TEST_F(CompressedRowSparseMatrixTest, Scale) {  Vector scale(num_cols);  for (int i = 0; i < num_cols; ++i) {    scale(i) = i + 1;  }  tsm->ScaleColumns(scale.data());  crsm->ScaleColumns(scale.data());  CompareMatrices(tsm.get(), crsm.get());}TEST_F(CompressedRowSparseMatrixTest, DeleteRows) {  // Clear the row and column blocks as these are purely scalar tests.  crsm->mutable_row_blocks()->clear();  crsm->mutable_col_blocks()->clear();  for (int i = 0; i < num_rows; ++i) {    tsm->Resize(num_rows - i, num_cols);    crsm->DeleteRows(crsm->num_rows() - tsm->num_rows());    CompareMatrices(tsm.get(), crsm.get());  }}TEST_F(CompressedRowSparseMatrixTest, AppendRows) {  // Clear the row and column blocks as these are purely scalar tests.  crsm->mutable_row_blocks()->clear();  crsm->mutable_col_blocks()->clear();  for (int i = 0; i < num_rows; ++i) {    TripletSparseMatrix tsm_appendage(*tsm);    tsm_appendage.Resize(i, num_cols);    tsm->AppendRows(tsm_appendage);    std::unique_ptr<CompressedRowSparseMatrix> crsm_appendage(        CompressedRowSparseMatrix::FromTripletSparseMatrix(tsm_appendage));    crsm->AppendRows(*crsm_appendage);    CompareMatrices(tsm.get(), crsm.get());  }}TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {  int num_diagonal_rows = crsm->num_cols();  std::unique_ptr<double[]> diagonal(new double[num_diagonal_rows]);  for (int i = 0; i < num_diagonal_rows; ++i) {    diagonal[i] = i;  }  vector<int> row_and_column_blocks;  row_and_column_blocks.push_back(1);  row_and_column_blocks.push_back(2);  row_and_column_blocks.push_back(2);  const vector<int> pre_row_blocks = crsm->row_blocks();  const vector<int> pre_col_blocks = crsm->col_blocks();  std::unique_ptr<CompressedRowSparseMatrix> appendage(      CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(          diagonal.get(), row_and_column_blocks));  crsm->AppendRows(*appendage);  const vector<int> post_row_blocks = crsm->row_blocks();  const vector<int> post_col_blocks = crsm->col_blocks();  vector<int> expected_row_blocks = pre_row_blocks;  expected_row_blocks.insert(expected_row_blocks.end(),                             row_and_column_blocks.begin(),                             row_and_column_blocks.end());  vector<int> expected_col_blocks = pre_col_blocks;  EXPECT_EQ(expected_row_blocks, crsm->row_blocks());  EXPECT_EQ(expected_col_blocks, crsm->col_blocks());  crsm->DeleteRows(num_diagonal_rows);  EXPECT_EQ(crsm->row_blocks(), pre_row_blocks);  EXPECT_EQ(crsm->col_blocks(), pre_col_blocks);}TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) {  Matrix tsm_dense;  Matrix crsm_dense;  tsm->ToDenseMatrix(&tsm_dense);  crsm->ToDenseMatrix(&crsm_dense);  EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0);}TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) {  CRSMatrix crs_matrix;  crsm->ToCRSMatrix(&crs_matrix);  EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows);  EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols);  EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size());  EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size());  EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size());  for (int i = 0; i < crsm->num_rows() + 1; ++i) {    EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]);  }  for (int i = 0; i < crsm->num_nonzeros(); ++i) {    EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]);    EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]);  }}TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) {  vector<int> blocks;  blocks.push_back(1);  blocks.push_back(2);  blocks.push_back(2);  Vector diagonal(5);  for (int i = 0; i < 5; ++i) {    diagonal(i) = i + 1;  }  std::unique_ptr<CompressedRowSparseMatrix> matrix(      CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(diagonal.data(),                                                           blocks));  EXPECT_EQ(matrix->num_rows(), 5);  EXPECT_EQ(matrix->num_cols(), 5);  EXPECT_EQ(matrix->num_nonzeros(), 9);  EXPECT_EQ(blocks, matrix->row_blocks());  EXPECT_EQ(blocks, matrix->col_blocks());  Vector x(5);  Vector y(5);  x.setOnes();  y.setZero();  matrix->RightMultiply(x.data(), y.data());  for (int i = 0; i < diagonal.size(); ++i) {    EXPECT_EQ(y[i], diagonal[i]);  }  y.setZero();  matrix->LeftMultiply(x.data(), y.data());  for (int i = 0; i < diagonal.size(); ++i) {    EXPECT_EQ(y[i], diagonal[i]);  }  Matrix dense;  matrix->ToDenseMatrix(&dense);  EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);}TEST(CompressedRowSparseMatrix, Transpose) {  //  0  1  0  2  3  0  //  4  6  7  0  0  8  //  9 10  0 11 12  0  // 13  0 14 15  9  0  //  0 16 17  0  0  0  // Block structure:  //  A  A  A  A  B  B  //  A  A  A  A  B  B  //  A  A  A  A  B  B  //  C  C  C  C  D  D  //  C  C  C  C  D  D  //  C  C  C  C  D  D  CompressedRowSparseMatrix matrix(5, 6, 30);  int* rows = matrix.mutable_rows();  int* cols = matrix.mutable_cols();  double* values = matrix.mutable_values();  matrix.mutable_row_blocks()->push_back(3);  matrix.mutable_row_blocks()->push_back(3);  matrix.mutable_col_blocks()->push_back(4);  matrix.mutable_col_blocks()->push_back(2);  rows[0] = 0;  cols[0] = 1;  cols[1] = 3;  cols[2] = 4;  rows[1] = 3;  cols[3] = 0;  cols[4] = 1;  cols[5] = 2;  cols[6] = 5;  rows[2] = 7;  cols[7] = 0;  cols[8] = 1;  cols[9] = 3;  cols[10] = 4;  rows[3] = 11;  cols[11] = 0;  cols[12] = 2;  cols[13] = 3;  cols[14] = 4;  rows[4] = 15;  cols[15] = 1;  cols[16] = 2;  rows[5] = 17;  std::copy(values, values + 17, cols);  std::unique_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose());  ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size());  for (int i = 0; i < transpose->row_blocks().size(); ++i) {    EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]);  }  ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size());  for (int i = 0; i < transpose->col_blocks().size(); ++i) {    EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]);  }  Matrix dense_matrix;  matrix.ToDenseMatrix(&dense_matrix);  Matrix dense_transpose;  transpose->ToDenseMatrix(&dense_transpose);  EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);}TEST(CompressedRowSparseMatrix, FromTripletSparseMatrix) {  TripletSparseMatrix::RandomMatrixOptions options;  options.num_rows = 5;  options.num_cols = 7;  options.density = 0.5;  const int kNumTrials = 10;  for (int i = 0; i < kNumTrials; ++i) {    std::unique_ptr<TripletSparseMatrix> tsm(        TripletSparseMatrix::CreateRandomMatrix(options));    std::unique_ptr<CompressedRowSparseMatrix> crsm(        CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));    Matrix expected;    tsm->ToDenseMatrix(&expected);    Matrix actual;    crsm->ToDenseMatrix(&actual);    EXPECT_NEAR((expected - actual).norm() / actual.norm(),                0.0,                std::numeric_limits<double>::epsilon())        << "\nexpected: \n"        << expected << "\nactual: \n"        << actual;  }}TEST(CompressedRowSparseMatrix, FromTripletSparseMatrixTransposed) {  TripletSparseMatrix::RandomMatrixOptions options;  options.num_rows = 5;  options.num_cols = 7;  options.density = 0.5;  const int kNumTrials = 10;  for (int i = 0; i < kNumTrials; ++i) {    std::unique_ptr<TripletSparseMatrix> tsm(        TripletSparseMatrix::CreateRandomMatrix(options));    std::unique_ptr<CompressedRowSparseMatrix> crsm(        CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm));    Matrix tmp;    tsm->ToDenseMatrix(&tmp);    Matrix expected = tmp.transpose();    Matrix actual;    crsm->ToDenseMatrix(&actual);    EXPECT_NEAR((expected - actual).norm() / actual.norm(),                0.0,                std::numeric_limits<double>::epsilon())        << "\nexpected: \n"        << expected << "\nactual: \n"        << actual;  }}typedef ::testing::tuple<CompressedRowSparseMatrix::StorageType> Param;static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {  if (::testing::get<0>(info.param) ==      CompressedRowSparseMatrix::UPPER_TRIANGULAR) {    return "UPPER";  }  if (::testing::get<0>(info.param) ==      CompressedRowSparseMatrix::LOWER_TRIANGULAR) {    return "LOWER";  }  return "UNSYMMETRIC";}class RightMultiplyTest : public ::testing::TestWithParam<Param> {};TEST_P(RightMultiplyTest, _) {  const int kMinNumBlocks = 1;  const int kMaxNumBlocks = 10;  const int kMinBlockSize = 1;  const int kMaxBlockSize = 5;  const int kNumTrials = 10;  for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;       ++num_blocks) {    for (int trial = 0; trial < kNumTrials; ++trial) {      Param param = GetParam();      CompressedRowSparseMatrix::RandomMatrixOptions options;      options.num_col_blocks = num_blocks;      options.min_col_block_size = kMinBlockSize;      options.max_col_block_size = kMaxBlockSize;      options.num_row_blocks = 2 * num_blocks;      options.min_row_block_size = kMinBlockSize;      options.max_row_block_size = kMaxBlockSize;      options.block_density = std::max(0.5, RandDouble());      options.storage_type = ::testing::get<0>(param);      std::unique_ptr<CompressedRowSparseMatrix> matrix(          CompressedRowSparseMatrix::CreateRandomMatrix(options));      const int num_rows = matrix->num_rows();      const int num_cols = matrix->num_cols();      Vector x(num_cols);      x.setRandom();      Vector actual_y(num_rows);      actual_y.setZero();      matrix->RightMultiply(x.data(), actual_y.data());      Matrix dense;      matrix->ToDenseMatrix(&dense);      Vector expected_y;      if (::testing::get<0>(param) ==          CompressedRowSparseMatrix::UPPER_TRIANGULAR) {        expected_y = dense.selfadjointView<Eigen::Upper>() * x;      } else if (::testing::get<0>(param) ==                 CompressedRowSparseMatrix::LOWER_TRIANGULAR) {        expected_y = dense.selfadjointView<Eigen::Lower>() * x;      } else {        expected_y = dense * x;      }      ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(),                  0.0,                  std::numeric_limits<double>::epsilon() * 10)          << "\n"          << dense          << "x:\n"          << x.transpose() << "\n"          << "expected: \n" << expected_y.transpose() << "\n"          << "actual: \n" << actual_y.transpose();    }  }}INSTANTIATE_TEST_SUITE_P(    CompressedRowSparseMatrix,    RightMultiplyTest,    ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,                      CompressedRowSparseMatrix::UPPER_TRIANGULAR,                      CompressedRowSparseMatrix::UNSYMMETRIC),    ParamInfoToString);class LeftMultiplyTest : public ::testing::TestWithParam<Param> {};TEST_P(LeftMultiplyTest, _) {  const int kMinNumBlocks = 1;  const int kMaxNumBlocks = 10;  const int kMinBlockSize = 1;  const int kMaxBlockSize = 5;  const int kNumTrials = 10;  for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;       ++num_blocks) {    for (int trial = 0; trial < kNumTrials; ++trial) {      Param param = GetParam();      CompressedRowSparseMatrix::RandomMatrixOptions options;      options.num_col_blocks = num_blocks;      options.min_col_block_size = kMinBlockSize;      options.max_col_block_size = kMaxBlockSize;      options.num_row_blocks = 2 * num_blocks;      options.min_row_block_size = kMinBlockSize;      options.max_row_block_size = kMaxBlockSize;      options.block_density = std::max(0.5, RandDouble());      options.storage_type = ::testing::get<0>(param);      std::unique_ptr<CompressedRowSparseMatrix> matrix(          CompressedRowSparseMatrix::CreateRandomMatrix(options));      const int num_rows = matrix->num_rows();      const int num_cols = matrix->num_cols();      Vector x(num_rows);      x.setRandom();      Vector actual_y(num_cols);      actual_y.setZero();      matrix->LeftMultiply(x.data(), actual_y.data());      Matrix dense;      matrix->ToDenseMatrix(&dense);      Vector expected_y;      if (::testing::get<0>(param) ==          CompressedRowSparseMatrix::UPPER_TRIANGULAR) {        expected_y = dense.selfadjointView<Eigen::Upper>() * x;      } else if (::testing::get<0>(param) ==                 CompressedRowSparseMatrix::LOWER_TRIANGULAR) {        expected_y = dense.selfadjointView<Eigen::Lower>() * x;      } else {        expected_y = dense.transpose() * x;      }      ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(),                  0.0,                  std::numeric_limits<double>::epsilon() * 10)          << "\n"          << dense          << "x\n"          << x.transpose() << "\n"          << "expected: \n" << expected_y.transpose() << "\n"          << "actual: \n" << actual_y.transpose();    }  }}INSTANTIATE_TEST_SUITE_P(    CompressedRowSparseMatrix,    LeftMultiplyTest,    ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,                      CompressedRowSparseMatrix::UPPER_TRIANGULAR,                      CompressedRowSparseMatrix::UNSYMMETRIC),    ParamInfoToString);class SquaredColumnNormTest : public ::testing::TestWithParam<Param> {};TEST_P(SquaredColumnNormTest, _) {  const int kMinNumBlocks = 1;  const int kMaxNumBlocks = 10;  const int kMinBlockSize = 1;  const int kMaxBlockSize = 5;  const int kNumTrials = 10;  for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;       ++num_blocks) {    for (int trial = 0; trial < kNumTrials; ++trial) {      Param param = GetParam();      CompressedRowSparseMatrix::RandomMatrixOptions options;      options.num_col_blocks = num_blocks;      options.min_col_block_size = kMinBlockSize;      options.max_col_block_size = kMaxBlockSize;      options.num_row_blocks = 2 * num_blocks;      options.min_row_block_size = kMinBlockSize;      options.max_row_block_size = kMaxBlockSize;      options.block_density = std::max(0.5, RandDouble());      options.storage_type = ::testing::get<0>(param);      std::unique_ptr<CompressedRowSparseMatrix> matrix(          CompressedRowSparseMatrix::CreateRandomMatrix(options));      const int num_cols = matrix->num_cols();      Vector actual(num_cols);      actual.setZero();      matrix->SquaredColumnNorm(actual.data());      Matrix dense;      matrix->ToDenseMatrix(&dense);      Vector expected;      if (::testing::get<0>(param) ==          CompressedRowSparseMatrix::UPPER_TRIANGULAR) {        const Matrix full = dense.selfadjointView<Eigen::Upper>();        expected = full.colwise().squaredNorm();      } else if (::testing::get<0>(param) ==                 CompressedRowSparseMatrix::LOWER_TRIANGULAR) {        const Matrix full = dense.selfadjointView<Eigen::Lower>();        expected = full.colwise().squaredNorm();      } else {        expected = dense.colwise().squaredNorm();      }      ASSERT_NEAR((expected - actual).norm() / actual.norm(),                  0.0,                  std::numeric_limits<double>::epsilon() * 10)          << "\n"          << dense          << "expected: \n" << expected.transpose() << "\n"          << "actual: \n" << actual.transpose();    }  }}INSTANTIATE_TEST_SUITE_P(    CompressedRowSparseMatrix,    SquaredColumnNormTest,    ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,                      CompressedRowSparseMatrix::UPPER_TRIANGULAR,                      CompressedRowSparseMatrix::UNSYMMETRIC),    ParamInfoToString);// TODO(sameeragarwal) Add tests for the random matrix creation methods.}  // namespace internal}  // namespace ceres
 |