| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_#define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_#include <vector>#include "ceres/internal/port.h"#include "ceres/sparse_matrix.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {struct CRSMatrix;namespace internal {class TripletSparseMatrix;class CompressedRowSparseMatrix : public SparseMatrix { public:  enum StorageType {    UNSYMMETRIC,    // Matrix is assumed to be symmetric but only the lower triangular    // part of the matrix is stored.    LOWER_TRIANGULAR,    // Matrix is assumed to be symmetric but only the upper triangular    // part of the matrix is stored.    UPPER_TRIANGULAR  };  // Create a matrix with the same content as the TripletSparseMatrix  // input. We assume that input does not have any repeated  // entries.  //  // The storage type of the matrix is set to UNSYMMETRIC.  //  // Caller owns the result.  static CompressedRowSparseMatrix* FromTripletSparseMatrix(      const TripletSparseMatrix& input);  // Create a matrix with the same content as the TripletSparseMatrix  // input transposed. We assume that input does not have any repeated  // entries.  //  // The storage type of the matrix is set to UNSYMMETRIC.  //  // Caller owns the result.  static CompressedRowSparseMatrix* FromTripletSparseMatrixTransposed(      const TripletSparseMatrix& input);  // Use this constructor only if you know what you are doing. This  // creates a "blank" matrix with the appropriate amount of memory  // allocated. However, the object itself is in an inconsistent state  // as the rows and cols matrices do not match the values of  // num_rows, num_cols and max_num_nonzeros.  //  // The use case for this constructor is that when the user knows the  // size of the matrix to begin with and wants to update the layout  // manually, instead of going via the indirect route of first  // constructing a TripletSparseMatrix, which leads to more than  // double the peak memory usage.  //  // The storage type is set to UNSYMMETRIC.  CompressedRowSparseMatrix(int num_rows, int num_cols, int max_num_nonzeros);  // Build a square sparse diagonal matrix with num_rows rows and  // columns. The diagonal m(i,i) = diagonal(i);  //  // The storage type is set to UNSYMMETRIC  CompressedRowSparseMatrix(const double* diagonal, int num_rows);  // SparseMatrix interface.  virtual ~CompressedRowSparseMatrix();  void SetZero() final;  void RightMultiply(const double* x, double* y) const final;  void LeftMultiply(const double* x, double* y) const final;  void SquaredColumnNorm(double* x) const final;  void ScaleColumns(const double* scale) final;  void ToDenseMatrix(Matrix* dense_matrix) const final;  void ToTextFile(FILE* file) const final;  int num_rows() const final { return num_rows_; }  int num_cols() const final { return num_cols_; }  int num_nonzeros() const final { return rows_[num_rows_]; }  const double* values() const final { return &values_[0]; }  double* mutable_values() final { return &values_[0]; }  // Delete the bottom delta_rows.  // num_rows -= delta_rows  void DeleteRows(int delta_rows);  // Append the contents of m to the bottom of this matrix. m must  // have the same number of columns as this matrix.  void AppendRows(const CompressedRowSparseMatrix& m);  void ToCRSMatrix(CRSMatrix* matrix) const;  CompressedRowSparseMatrix* Transpose() const;  // Destructive array resizing method.  void SetMaxNumNonZeros(int num_nonzeros);  // Non-destructive array resizing method.  void set_num_rows(const int num_rows) { num_rows_ = num_rows; }  void set_num_cols(const int num_cols) { num_cols_ = num_cols; }  // Low level access methods that expose the structure of the matrix.  const int* cols() const { return &cols_[0]; }  int* mutable_cols() { return &cols_[0]; }  const int* rows() const { return &rows_[0]; }  int* mutable_rows() { return &rows_[0]; }  const StorageType storage_type() const { return storage_type_; }  void set_storage_type(const StorageType storage_type) {    storage_type_ = storage_type;  }  const std::vector<int>& row_blocks() const { return row_blocks_; }  std::vector<int>* mutable_row_blocks() { return &row_blocks_; }  const std::vector<int>& col_blocks() const { return col_blocks_; }  std::vector<int>* mutable_col_blocks() { return &col_blocks_; }  // Create a block diagonal CompressedRowSparseMatrix with the given  // block structure. The individual blocks are assumed to be laid out  // contiguously in the diagonal array, one block at a time.  //  // Caller owns the result.  static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix(      const double* diagonal, const std::vector<int>& blocks);  // Options struct to control the generation of random block sparse  // matrices in compressed row sparse format.  //  // The random matrix generation proceeds as follows.  //  // First the row and column block structure is determined by  // generating random row and column block sizes that lie within the  // given bounds.  //  // Then we walk the block structure of the resulting matrix, and with  // probability block_density detemine whether they are structurally  // zero or not. If the answer is no, then we generate entries for the  // block which are distributed normally.  struct RandomMatrixOptions {    // Type of matrix to create.    //    // If storage_type is UPPER_TRIANGULAR (LOWER_TRIANGULAR), then    // create a square symmetric matrix with just the upper triangular    // (lower triangular) part. In this case, num_col_blocks,    // min_col_block_size and max_col_block_size will be ignored and    // assumed to be equal to the corresponding row settings.    StorageType storage_type = UNSYMMETRIC;    int num_row_blocks = 0;    int min_row_block_size = 0;    int max_row_block_size = 0;    int num_col_blocks = 0;    int min_col_block_size = 0;    int max_col_block_size = 0;    // 0 < block_density <= 1 is the probability of a block being    // present in the matrix. A given random matrix will not have    // precisely this density.    double block_density = 0.0;  };  // Create a random CompressedRowSparseMatrix whose entries are  // normally distributed and whose structure is determined by  // RandomMatrixOptions.  //  // Caller owns the result.  static CompressedRowSparseMatrix* CreateRandomMatrix(      RandomMatrixOptions options); private:  static CompressedRowSparseMatrix* FromTripletSparseMatrix(      const TripletSparseMatrix& input, bool transpose);  int num_rows_;  int num_cols_;  std::vector<int> rows_;  std::vector<int> cols_;  std::vector<double> values_;  StorageType storage_type_;  // If the matrix has an underlying block structure, then it can also  // carry with it row and column block sizes. This is auxilliary and  // optional information for use by algorithms operating on the  // matrix. The class itself does not make use of this information in  // any way.  std::vector<int> row_blocks_;  std::vector<int> col_blocks_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
 |