| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_#define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_#include <vector>#include "ceres/internal/port.h"namespace ceres {namespace internal {// Extract the block sparsity pattern of the scalar compressed columns// matrix and return it in compressed column form. The compressed// column form is stored in two vectors block_rows, and block_cols,// which correspond to the row and column arrays in a compressed// column sparse matrix.//// If c_ij is the block in the matrix A corresponding to row block i// and column block j, then it is expected that A contains at least// one non-zero entry corresponding to the top left entry of c_ij,// as that entry is used to detect the presence of a non-zero c_ij.void CompressedColumnScalarMatrixToBlockMatrix(    const int* scalar_rows,    const int* scalar_cols,    const std::vector<int>& row_blocks,    const std::vector<int>& col_blocks,    std::vector<int>* block_rows,    std::vector<int>* block_cols);// Given a set of blocks and a permutation of these blocks, compute// the corresponding "scalar" ordering, where the scalar ordering of// size sum(blocks).void BlockOrderingToScalarOrdering(    const std::vector<int>& blocks,    const std::vector<int>& block_ordering,    std::vector<int>* scalar_ordering);// Solve the linear system////   R * solution = rhs//// Where R is an upper triangular compressed column sparse matrix.template <typename IntegerType>void SolveUpperTriangularInPlace(IntegerType num_cols,                                 const IntegerType* rows,                                 const IntegerType* cols,                                 const double* values,                                 double* rhs_and_solution) {  for (IntegerType c = num_cols - 1; c >= 0; --c) {    rhs_and_solution[c] /= values[cols[c + 1] - 1];    for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {      const IntegerType r = rows[idx];      const double v = values[idx];      rhs_and_solution[r] -= v * rhs_and_solution[c];    }  }}// Solve the linear system////   R' * solution = rhs//// Where R is an upper triangular compressed column sparse matrix.template <typename IntegerType>void SolveUpperTriangularTransposeInPlace(IntegerType num_cols,                                          const IntegerType* rows,                                          const IntegerType* cols,                                          const double* values,                                          double* rhs_and_solution) {  for (IntegerType c = 0; c < num_cols; ++c) {    for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {      const IntegerType r = rows[idx];      const double v = values[idx];      rhs_and_solution[c] -= v * rhs_and_solution[r];    }    rhs_and_solution[c] =  rhs_and_solution[c] / values[cols[c + 1] - 1];  }}// Given a upper triangular matrix R in compressed column form, solve// the linear system,////  R'R x = b//// Where b is all zeros except for rhs_nonzero_index, where it is// equal to one.//// The function exploits this knowledge to reduce the number of// floating point operations.template <typename IntegerType>void SolveRTRWithSparseRHS(IntegerType num_cols,                           const IntegerType* rows,                           const IntegerType* cols,                           const double* values,                           const int rhs_nonzero_index,                           double* solution) {  std::fill(solution, solution + num_cols, 0.0);  solution[rhs_nonzero_index] = 1.0 / values[cols[rhs_nonzero_index + 1] - 1];  for (IntegerType c = rhs_nonzero_index + 1; c < num_cols; ++c) {    for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {      const IntegerType r = rows[idx];      if (r < rhs_nonzero_index) continue;      const double v = values[idx];      solution[c] -= v * solution[r];    }    solution[c] =  solution[c] / values[cols[c + 1] - 1];  }  SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution);}}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
 |