| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)#ifndef CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_#define CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_#include <algorithm>#include <memory>#include "ceres/linear_operator.h"#include "ceres/internal/eigen.h"namespace ceres {namespace internal {class SparseMatrix;// A linear operator which takes a matrix A and a diagonal vector D and// performs products of the form////   (A^T A + D^T D)x//// This is used to implement iterative general sparse linear solving with// conjugate gradients, where A is the Jacobian and D is a regularizing// parameter. A brief proof that D^T D is the correct regularizer://// Given a regularized least squares problem:////   min  ||Ax - b||^2 + ||Dx||^2//    x//// First expand into matrix notation:////   (Ax - b)^T (Ax - b) + xD^TDx//// Then multiply out to get:////   = xA^TAx - 2b^T Ax + b^Tb + xD^TDx//// Take the derivative:////   0 = 2A^TAx - 2A^T b + 2 D^TDx//   0 = A^TAx - A^T b + D^TDx//   0 = (A^TA + D^TD)x - A^T b//// Thus, the symmetric system we need to solve for CGNR is////   Sx = z//// with S = A^TA + D^TD//  and z = A^T b//// Note: This class is not thread safe, since it uses some temporary storage.class CgnrLinearOperator : public LinearOperator { public:  CgnrLinearOperator(const LinearOperator& A, const double *D)      : A_(A), D_(D), z_(new double[A.num_rows()]) {  }  virtual ~CgnrLinearOperator() {}  void RightMultiply(const double* x, double* y) const final {    std::fill(z_.get(), z_.get() + A_.num_rows(), 0.0);    // z = Ax    A_.RightMultiply(x, z_.get());    // y = y + Atz    A_.LeftMultiply(z_.get(), y);    // y = y + DtDx    if (D_ != NULL) {      int n = A_.num_cols();      VectorRef(y, n).array() += ConstVectorRef(D_, n).array().square() *                                 ConstVectorRef(x, n).array();    }  }  void LeftMultiply(const double* x, double* y) const final {    RightMultiply(x, y);  }  int num_rows() const final { return A_.num_cols(); }  int num_cols() const final { return A_.num_cols(); } private:  const LinearOperator& A_;  const double* D_;  std::unique_ptr<double[]> z_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_
 |