| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: mierle@gmail.com (Keir Mierle)#include "ceres/c_api.h"#include <cmath>#include "glog/logging.h"#include "gtest/gtest.h"// Duplicated from curve_fitting.cc.int num_observations = 67;double data[] = {  0.000000e+00, 1.133898e+00,  7.500000e-02, 1.334902e+00,  1.500000e-01, 1.213546e+00,  2.250000e-01, 1.252016e+00,  3.000000e-01, 1.392265e+00,  3.750000e-01, 1.314458e+00,  4.500000e-01, 1.472541e+00,  5.250000e-01, 1.536218e+00,  6.000000e-01, 1.355679e+00,  6.750000e-01, 1.463566e+00,  7.500000e-01, 1.490201e+00,  8.250000e-01, 1.658699e+00,  9.000000e-01, 1.067574e+00,  9.750000e-01, 1.464629e+00,  1.050000e+00, 1.402653e+00,  1.125000e+00, 1.713141e+00,  1.200000e+00, 1.527021e+00,  1.275000e+00, 1.702632e+00,  1.350000e+00, 1.423899e+00,  1.425000e+00, 1.543078e+00,  1.500000e+00, 1.664015e+00,  1.575000e+00, 1.732484e+00,  1.650000e+00, 1.543296e+00,  1.725000e+00, 1.959523e+00,  1.800000e+00, 1.685132e+00,  1.875000e+00, 1.951791e+00,  1.950000e+00, 2.095346e+00,  2.025000e+00, 2.361460e+00,  2.100000e+00, 2.169119e+00,  2.175000e+00, 2.061745e+00,  2.250000e+00, 2.178641e+00,  2.325000e+00, 2.104346e+00,  2.400000e+00, 2.584470e+00,  2.475000e+00, 1.914158e+00,  2.550000e+00, 2.368375e+00,  2.625000e+00, 2.686125e+00,  2.700000e+00, 2.712395e+00,  2.775000e+00, 2.499511e+00,  2.850000e+00, 2.558897e+00,  2.925000e+00, 2.309154e+00,  3.000000e+00, 2.869503e+00,  3.075000e+00, 3.116645e+00,  3.150000e+00, 3.094907e+00,  3.225000e+00, 2.471759e+00,  3.300000e+00, 3.017131e+00,  3.375000e+00, 3.232381e+00,  3.450000e+00, 2.944596e+00,  3.525000e+00, 3.385343e+00,  3.600000e+00, 3.199826e+00,  3.675000e+00, 3.423039e+00,  3.750000e+00, 3.621552e+00,  3.825000e+00, 3.559255e+00,  3.900000e+00, 3.530713e+00,  3.975000e+00, 3.561766e+00,  4.050000e+00, 3.544574e+00,  4.125000e+00, 3.867945e+00,  4.200000e+00, 4.049776e+00,  4.275000e+00, 3.885601e+00,  4.350000e+00, 4.110505e+00,  4.425000e+00, 4.345320e+00,  4.500000e+00, 4.161241e+00,  4.575000e+00, 4.363407e+00,  4.650000e+00, 4.161576e+00,  4.725000e+00, 4.619728e+00,  4.800000e+00, 4.737410e+00,  4.875000e+00, 4.727863e+00,  4.950000e+00, 4.669206e+00,};// A test cost function, similar to the one in curve_fitting.c.static int exponential_residual(void* user_data,                                double** parameters,                                double* residuals,                                double** jacobians) {  double* measurement = (double*) user_data;  double x = measurement[0];  double y = measurement[1];  double m = parameters[0][0];  double c = parameters[1][0];  residuals[0] = y - exp(m * x + c);  if (jacobians == NULL) {    return 1;  }  if (jacobians[0] != NULL) {    jacobians[0][0] = - x * exp(m * x + c);  // dr/dm  }  if (jacobians[1] != NULL) {    jacobians[1][0] =     - exp(m * x + c);  // dr/dc  }  return 1;}namespace ceres {namespace internal {TEST(C_API, SimpleEndToEndTest) {  double m = 0.0;  double c = 0.0;  double *parameter_pointers[] = { &m, &c };  int parameter_sizes[] = { 1, 1 };  ceres_problem_t* problem = ceres_create_problem();  for (int i = 0; i < num_observations; ++i) {    ceres_problem_add_residual_block(        problem,        exponential_residual,  // Cost function        &data[2 * i],          // Points to the (x,y) measurement        NULL,                  // Loss function        NULL,                  // Loss function user data        1,                     // Number of residuals        2,                     // Number of parameter blocks        parameter_sizes,        parameter_pointers);  }  ceres_solve(problem);  EXPECT_NEAR(0.3, m, 0.02);  EXPECT_NEAR(0.1, c, 0.04);  ceres_free_problem(problem);}template<typename T>class ScopedSetValue { public:  ScopedSetValue(T* variable, T new_value)      : variable_(variable), old_value_(*variable) {    *variable = new_value;  }  ~ScopedSetValue() {    *variable_ = old_value_;  } private:  T* variable_;  T old_value_;};TEST(C_API, LossFunctions) {  double m = 0.2;  double c = 0.03;  double *parameter_pointers[] = { &m, &c };  int parameter_sizes[] = { 1, 1 };  // Create two outliers, but be careful to leave the data intact.  ScopedSetValue<double> outlier1x(&data[12], 2.5);  ScopedSetValue<double> outlier1y(&data[13], 1.0e3);  ScopedSetValue<double> outlier2x(&data[14], 3.2);  ScopedSetValue<double> outlier2y(&data[15], 30e3);  // Create a cauchy cost function, and reuse it many times.  void* cauchy_loss_data =      ceres_create_cauchy_loss_function_data(5.0);  ceres_problem_t* problem = ceres_create_problem();  for (int i = 0; i < num_observations; ++i) {    ceres_problem_add_residual_block(        problem,        exponential_residual,  // Cost function        &data[2 * i],          // Points to the (x,y) measurement        ceres_stock_loss_function,        cauchy_loss_data,      // Loss function user data        1,                     // Number of residuals        2,                     // Number of parameter blocks        parameter_sizes,        parameter_pointers);  }  ceres_solve(problem);  EXPECT_NEAR(0.3, m, 0.02);  EXPECT_NEAR(0.1, c, 0.04);  ceres_free_stock_loss_function_data(cauchy_loss_data);  ceres_free_problem(problem);}}  // namespace internal}  // namespace ceres
 |