| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: mierle@gmail.com (Keir Mierle)//// An incomplete C API for Ceres.//// TODO(keir): Figure out why logging does not seem to work.#include "ceres/c_api.h"#include <vector>#include <iostream>#include <string>#include "ceres/cost_function.h"#include "ceres/loss_function.h"#include "ceres/problem.h"#include "ceres/solver.h"#include "ceres/types.h"  // for std#include "glog/logging.h"using ceres::Problem;void ceres_init() {  // This is not ideal, but it's not clear what to do if there is no gflags and  // no access to command line arguments.  char message[] = "<unknown>";  google::InitGoogleLogging(message);}ceres_problem_t* ceres_create_problem() {  return reinterpret_cast<ceres_problem_t*>(new Problem);}void ceres_free_problem(ceres_problem_t* problem) {  delete reinterpret_cast<Problem*>(problem);}// This cost function wraps a C-level function pointer from the user, to bridge// between C and C++.class CallbackCostFunction : public ceres::CostFunction { public:  CallbackCostFunction(ceres_cost_function_t cost_function,                       void* user_data,                       int num_residuals,                       int num_parameter_blocks,                       int* parameter_block_sizes)      : cost_function_(cost_function),        user_data_(user_data) {    set_num_residuals(num_residuals);    for (int i = 0; i < num_parameter_blocks; ++i) {      mutable_parameter_block_sizes()->push_back(parameter_block_sizes[i]);    }  }  virtual ~CallbackCostFunction() {}  bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const final {    return (*cost_function_)(user_data_,                             const_cast<double**>(parameters),                             residuals,                             jacobians);  } private:  ceres_cost_function_t cost_function_;  void* user_data_;};// This loss function wraps a C-level function pointer from the user, to bridge// between C and C++.class CallbackLossFunction : public ceres::LossFunction { public:  explicit CallbackLossFunction(ceres_loss_function_t loss_function,                                void* user_data)    : loss_function_(loss_function), user_data_(user_data) {}  void Evaluate(double sq_norm, double* rho) const final {    (*loss_function_)(user_data_, sq_norm, rho);  } private:  ceres_loss_function_t loss_function_;  void* user_data_;};// Wrappers for the stock loss functions.void* ceres_create_huber_loss_function_data(double a) {  return new ceres::HuberLoss(a);}void* ceres_create_softl1_loss_function_data(double a) {  return new ceres::SoftLOneLoss(a);}void* ceres_create_cauchy_loss_function_data(double a) {  return new ceres::CauchyLoss(a);}void* ceres_create_arctan_loss_function_data(double a) {  return new ceres::ArctanLoss(a);}void* ceres_create_tolerant_loss_function_data(double a, double b) {  return new ceres::TolerantLoss(a, b);}void ceres_free_stock_loss_function_data(void* loss_function_data) {  delete reinterpret_cast<ceres::LossFunction*>(loss_function_data);}void ceres_stock_loss_function(void* user_data,                               double squared_norm,                               double out[3]) {  reinterpret_cast<ceres::LossFunction*>(user_data)      ->Evaluate(squared_norm, out);}ceres_residual_block_id_t* ceres_problem_add_residual_block(    ceres_problem_t* problem,    ceres_cost_function_t cost_function,    void* cost_function_data,    ceres_loss_function_t loss_function,    void* loss_function_data,    int num_residuals,    int num_parameter_blocks,    int* parameter_block_sizes,    double** parameters) {  Problem* ceres_problem = reinterpret_cast<Problem*>(problem);  ceres::CostFunction* callback_cost_function =      new CallbackCostFunction(cost_function,                               cost_function_data,                               num_residuals,                               num_parameter_blocks,                               parameter_block_sizes);  ceres::LossFunction* callback_loss_function = NULL;  if (loss_function != NULL) {    callback_loss_function = new CallbackLossFunction(loss_function,                                                      loss_function_data);  }  std::vector<double*> parameter_blocks(parameters,                                        parameters + num_parameter_blocks);  return reinterpret_cast<ceres_residual_block_id_t*>(      ceres_problem->AddResidualBlock(callback_cost_function,                                      callback_loss_function,                                      parameter_blocks));}void ceres_solve(ceres_problem_t* c_problem) {  Problem* problem = reinterpret_cast<Problem*>(c_problem);  // TODO(keir): Obviously, this way of setting options won't scale or last.  // Instead, figure out a way to specify some of the options without  // duplicating everything.  ceres::Solver::Options options;  options.max_num_iterations = 100;  options.linear_solver_type = ceres::DENSE_QR;  options.minimizer_progress_to_stdout = true;  ceres::Solver::Summary summary;  ceres::Solve(options, problem, &summary);  std::cout << summary.FullReport() << "\n";}
 |