| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2018 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//// End-to-end bundle adjustment test utilities for Ceres. This base is used in// the generated bundle adjustment test binaries. The reason to split the// bundle tests into separate binaries is so the tests can get parallelized.#include <cmath>#include <cstdio>#include <cstdlib>#include <string>#include "ceres/internal/port.h"#include "ceres/autodiff_cost_function.h"#include "ceres/ordered_groups.h"#include "ceres/problem.h"#include "ceres/rotation.h"#include "ceres/solver.h"#include "ceres/stringprintf.h"#include "ceres/test_util.h"#include "ceres/types.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {using std::string;using std::vector;const bool kAutomaticOrdering = true;const bool kUserOrdering = false;// This class implements the SystemTestProblem interface and provides// access to a bundle adjustment problem. It is based on// examples/bundle_adjustment_example.cc. Currently a small 16 camera// problem is hard coded in the constructor.class BundleAdjustmentProblem { public:  BundleAdjustmentProblem() {    const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt");    ReadData(input_file);    BuildProblem();  }  ~BundleAdjustmentProblem() {    delete []point_index_;    delete []camera_index_;    delete []observations_;    delete []parameters_;  }  Problem* mutable_problem() { return &problem_; }  Solver::Options* mutable_solver_options() { return &options_; }  int num_cameras()            const { return num_cameras_;        }  int num_points()             const { return num_points_;         }  int num_observations()       const { return num_observations_;   }  const int* point_index()     const { return point_index_;  }  const int* camera_index()    const { return camera_index_; }  const double* observations() const { return observations_; }  double* mutable_cameras() { return parameters_; }  double* mutable_points() { return parameters_  + 9 * num_cameras_; }  static double kResidualTolerance; private:  void ReadData(const string& filename) {    FILE * fptr = fopen(filename.c_str(), "r");    if (!fptr) {      LOG(FATAL) << "File Error: unable to open file " << filename;    }    // This will die horribly on invalid files. Them's the breaks.    FscanfOrDie(fptr, "%d", &num_cameras_);    FscanfOrDie(fptr, "%d", &num_points_);    FscanfOrDie(fptr, "%d", &num_observations_);    VLOG(1) << "Header: " << num_cameras_            << " " << num_points_            << " " << num_observations_;    point_index_ = new int[num_observations_];    camera_index_ = new int[num_observations_];    observations_ = new double[2 * num_observations_];    num_parameters_ = 9 * num_cameras_ + 3 * num_points_;    parameters_ = new double[num_parameters_];    for (int i = 0; i < num_observations_; ++i) {      FscanfOrDie(fptr, "%d", camera_index_ + i);      FscanfOrDie(fptr, "%d", point_index_ + i);      for (int j = 0; j < 2; ++j) {        FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);      }    }    for (int i = 0; i < num_parameters_; ++i) {      FscanfOrDie(fptr, "%lf", parameters_ + i);    }    fclose(fptr);  }  void BuildProblem() {    double* points = mutable_points();    double* cameras = mutable_cameras();    for (int i = 0; i < num_observations(); ++i) {      // Each Residual block takes a point and a camera as input and      // outputs a 2 dimensional residual.      CostFunction* cost_function =          new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>(              new BundlerResidual(observations_[2*i + 0],                                  observations_[2*i + 1]));      // Each observation corresponds to a pair of a camera and a point      // which are identified by camera_index()[i] and      // point_index()[i] respectively.      double* camera = cameras + 9 * camera_index_[i];      double* point = points + 3 * point_index()[i];      problem_.AddResidualBlock(cost_function, NULL, camera, point);    }    options_.linear_solver_ordering.reset(new ParameterBlockOrdering);    // The points come before the cameras.    for (int i = 0; i < num_points_; ++i) {      options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0);    }    for (int i = 0; i < num_cameras_; ++i) {      options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1);    }    options_.linear_solver_type = DENSE_SCHUR;    options_.max_num_iterations = 25;    options_.function_tolerance = 1e-10;    options_.gradient_tolerance = 1e-10;    options_.parameter_tolerance = 1e-10;  }  template<typename T>  void FscanfOrDie(FILE *fptr, const char *format, T *value) {    int num_scanned = fscanf(fptr, format, value);    if (num_scanned != 1) {      LOG(FATAL) << "Invalid UW data file.";    }  }  // Templated pinhole camera model.  The camera is parameterized  // using 9 parameters. 3 for rotation, 3 for translation, 1 for  // focal length and 2 for radial distortion. The principal point is  // not modeled (i.e. it is assumed to be located at the image  // center).  struct BundlerResidual {    // (u, v): the position of the observation with respect to the image    // center point.    BundlerResidual(double u, double v): u(u), v(v) {}    template <typename T>    bool operator()(const T* const camera,                    const T* const point,                    T* residuals) const {      T p[3];      AngleAxisRotatePoint(camera, point, p);      // Add the translation vector      p[0] += camera[3];      p[1] += camera[4];      p[2] += camera[5];      const T& focal = camera[6];      const T& l1 = camera[7];      const T& l2 = camera[8];      // Compute the center of distortion.  The sign change comes from      // the camera model that Noah Snavely's Bundler assumes, whereby      // the camera coordinate system has a negative z axis.      T xp = - focal * p[0] / p[2];      T yp = - focal * p[1] / p[2];      // Apply second and fourth order radial distortion.      T r2 = xp*xp + yp*yp;      T distortion = T(1.0) + r2  * (l1 + l2  * r2);      residuals[0] = distortion * xp - u;      residuals[1] = distortion * yp - v;      return true;    }    double u;    double v;  };  Problem problem_;  Solver::Options options_;  int num_cameras_;  int num_points_;  int num_observations_;  int num_parameters_;  int* point_index_;  int* camera_index_;  double* observations_;  // The parameter vector is laid out as follows  // [camera_1, ..., camera_n, point_1, ..., point_m]  double* parameters_;};double BundleAdjustmentProblem::kResidualTolerance = 1e-4;typedef SystemTest<BundleAdjustmentProblem> BundleAdjustmentTest;}  // namespace internal}  // namespace ceres
 |