| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/block_random_access_sparse_matrix.h"#include <algorithm>#include <memory>#include <set>#include <utility>#include <vector>#include "ceres/internal/port.h"#include "ceres/triplet_sparse_matrix.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::make_pair;using std::pair;using std::set;using std::vector;BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(    const vector<int>& blocks,    const set<pair<int, int>>& block_pairs)    : kMaxRowBlocks(10 * 1000 * 1000),      blocks_(blocks) {  CHECK_LT(blocks.size(), kMaxRowBlocks);  // Build the row/column layout vector and count the number of scalar  // rows/columns.  int num_cols = 0;  block_positions_.reserve(blocks_.size());  for (int i = 0; i < blocks_.size(); ++i) {    block_positions_.push_back(num_cols);    num_cols += blocks_[i];  }  // Count the number of scalar non-zero entries and build the layout  // object for looking into the values array of the  // TripletSparseMatrix.  int num_nonzeros = 0;  for (const auto& block_pair : block_pairs) {    const int row_block_size = blocks_[block_pair.first];    const int col_block_size = blocks_[block_pair.second];    num_nonzeros += row_block_size * col_block_size;  }  VLOG(1) << "Matrix Size [" << num_cols          << "," << num_cols          << "] " << num_nonzeros;  tsm_.reset(new TripletSparseMatrix(num_cols, num_cols, num_nonzeros));  tsm_->set_num_nonzeros(num_nonzeros);  int* rows = tsm_->mutable_rows();  int* cols = tsm_->mutable_cols();  double* values = tsm_->mutable_values();  int pos = 0;  for (const auto& block_pair : block_pairs) {    const int row_block_size = blocks_[block_pair.first];    const int col_block_size = blocks_[block_pair.second];    cell_values_.push_back(make_pair(block_pair, values + pos));    layout_[IntPairToLong(block_pair.first, block_pair.second)] =        new CellInfo(values + pos);    pos += row_block_size * col_block_size;  }  // Fill the sparsity pattern of the underlying matrix.  for (const auto& block_pair : block_pairs) {    const int row_block_id = block_pair.first;    const int col_block_id = block_pair.second;    const int row_block_size = blocks_[row_block_id];    const int col_block_size = blocks_[col_block_id];    int pos =        layout_[IntPairToLong(row_block_id, col_block_id)]->values - values;    for (int r = 0; r < row_block_size; ++r) {      for (int c = 0; c < col_block_size; ++c, ++pos) {          rows[pos] = block_positions_[row_block_id] + r;          cols[pos] = block_positions_[col_block_id] + c;          values[pos] = 1.0;          DCHECK_LT(rows[pos], tsm_->num_rows());          DCHECK_LT(cols[pos], tsm_->num_rows());      }    }  }}// Assume that the user does not hold any locks on any cell blocks// when they are calling SetZero.BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() {  for (const auto& entry : layout_) {    delete entry.second;  }}CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,                                                 int col_block_id,                                                 int* row,                                                 int* col,                                                 int* row_stride,                                                 int* col_stride) {  const LayoutType::iterator it  =      layout_.find(IntPairToLong(row_block_id, col_block_id));  if (it == layout_.end()) {    return NULL;  }  // Each cell is stored contiguously as its own little dense matrix.  *row = 0;  *col = 0;  *row_stride = blocks_[row_block_id];  *col_stride = blocks_[col_block_id];  return it->second;}// Assume that the user does not hold any locks on any cell blocks// when they are calling SetZero.void BlockRandomAccessSparseMatrix::SetZero() {  if (tsm_->num_nonzeros()) {    VectorRef(tsm_->mutable_values(),              tsm_->num_nonzeros()).setZero();  }}void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x,                                                           double* y) const {  for (const auto& cell_position_and_data : cell_values_) {    const int row = cell_position_and_data.first.first;    const int row_block_size = blocks_[row];    const int row_block_pos = block_positions_[row];    const int col = cell_position_and_data.first.second;    const int col_block_size = blocks_[col];    const int col_block_pos = block_positions_[col];    MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(        cell_position_and_data.second, row_block_size, col_block_size,        x + col_block_pos,        y + row_block_pos);    // Since the matrix is symmetric, but only the upper triangular    // part is stored, if the block being accessed is not a diagonal    // block, then use the same block to do the corresponding lower    // triangular multiply also.    if (row != col) {      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          cell_position_and_data.second, row_block_size, col_block_size,          x + row_block_pos,          y + col_block_pos);    }  }}}  // namespace internal}  // namespace ceres
 |