| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// An example program that minimizes Powell's singular function.////   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)////   f1 = x1 + 10*x2;//   f2 = sqrt(5) * (x3 - x4)//   f3 = (x2 - 2*x3)^2//   f4 = sqrt(10) * (x1 - x4)^2//// The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.// The minimum is 0 at (x1, x2, x3, x4) = 0.//// From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.// Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,// Vol 7(1), March 1981.#include <vector>#include "ceres/ceres.h"#include "gflags/gflags.h"#include "glog/logging.h"using ceres::AutoDiffCostFunction;using ceres::CostFunction;using ceres::Problem;using ceres::Solver;using ceres::Solve;struct F1 {  template <typename T> bool operator()(const T* const x1,                                        const T* const x2,                                        T* residual) const {    // f1 = x1 + 10 * x2;    residual[0] = x1[0] + 10.0 * x2[0];    return true;  }};struct F2 {  template <typename T> bool operator()(const T* const x3,                                        const T* const x4,                                        T* residual) const {    // f2 = sqrt(5) (x3 - x4)    residual[0] = sqrt(5.0) * (x3[0] - x4[0]);    return true;  }};struct F3 {  template <typename T> bool operator()(const T* const x2,                                        const T* const x3,                                        T* residual) const {    // f3 = (x2 - 2 x3)^2    residual[0] = (x2[0] - 2.0 * x3[0]) * (x2[0] - 2.0 * x3[0]);    return true;  }};struct F4 {  template <typename T> bool operator()(const T* const x1,                                        const T* const x4,                                        T* residual) const {    // f4 = sqrt(10) (x1 - x4)^2    residual[0] = sqrt(10.0) * (x1[0] - x4[0]) * (x1[0] - x4[0]);    return true;  }};DEFINE_string(minimizer, "trust_region",              "Minimizer type to use, choices are: line_search & trust_region");int main(int argc, char** argv) {  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  double x1 =  3.0;  double x2 = -1.0;  double x3 =  0.0;  double x4 =  1.0;  Problem problem;  // Add residual terms to the problem using the using the autodiff  // wrapper to get the derivatives automatically. The parameters, x1 through  // x4, are modified in place.  problem.AddResidualBlock(new AutoDiffCostFunction<F1, 1, 1, 1>(new F1),                           NULL,                           &x1, &x2);  problem.AddResidualBlock(new AutoDiffCostFunction<F2, 1, 1, 1>(new F2),                           NULL,                           &x3, &x4);  problem.AddResidualBlock(new AutoDiffCostFunction<F3, 1, 1, 1>(new F3),                           NULL,                           &x2, &x3);  problem.AddResidualBlock(new AutoDiffCostFunction<F4, 1, 1, 1>(new F4),                           NULL,                           &x1, &x4);  Solver::Options options;  LOG_IF(FATAL, !ceres::StringToMinimizerType(FLAGS_minimizer,                                              &options.minimizer_type))      << "Invalid minimizer: " << FLAGS_minimizer      << ", valid options are: trust_region and line_search.";  options.max_num_iterations = 100;  options.linear_solver_type = ceres::DENSE_QR;  options.minimizer_progress_to_stdout = true;  std::cout << "Initial x1 = " << x1            << ", x2 = " << x2            << ", x3 = " << x3            << ", x4 = " << x4            << "\n";  // Run the solver!  Solver::Summary summary;  Solve(options, &problem, &summary);  std::cout << summary.FullReport() << "\n";  std::cout << "Final x1 = " << x1            << ", x2 = " << x2            << ", x3 = " << x3            << ", x4 = " << x4            << "\n";  return 0;}
 |