| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// The National Institute of Standards and Technology has released a// set of problems to test non-linear least squares solvers.//// More information about the background on these problems and// suggested evaluation methodology can be found at:////   http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml//// The problem data themselves can be found at////   http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml//// The problems are divided into three levels of difficulty, Easy,// Medium and Hard. For each problem there are two starting guesses,// the first one far away from the global minimum and the second// closer to it.//// A problem is considered successfully solved, if every components of// the solution matches the globally optimal solution in at least 4// digits or more.//// This dataset was used for an evaluation of Non-linear least squares// solvers://// P. F. Mondragon & B. Borchers, A Comparison of Nonlinear Regression// Codes, Journal of Modern Applied Statistical Methods, 4(1):343-351,// 2005.//// The results from Mondragon & Borchers can be summarized as//               Excel  Gnuplot  GaussFit  HBN  MinPack// Average LRE     2.3      4.3       4.0  6.8      4.4//      Winner       1        5        12   29       12//// Where the row Winner counts, the number of problems for which the// solver had the highest LRE.// In this file, we implement the same evaluation methodology using// Ceres. Currently using Levenberg-Marquardt with DENSE_QR, we get////               Excel  Gnuplot  GaussFit  HBN  MinPack  Ceres// Average LRE     2.3      4.3       4.0  6.8      4.4    9.4//      Winner       0        0         5   11        2     41#include <fstream>#include <iostream>#include <iterator>#include "Eigen/Core"#include "ceres/ceres.h"#include "ceres/tiny_solver.h"#include "ceres/tiny_solver_cost_function_adapter.h"#include "gflags/gflags.h"#include "glog/logging.h"DEFINE_bool(use_tiny_solver, false, "Use TinySolver instead of Ceres::Solver");DEFINE_string(nist_data_dir, "", "Directory containing the NIST non-linear"              "regression examples");DEFINE_string(minimizer, "trust_region",              "Minimizer type to use, choices are: line_search & trust_region");DEFINE_string(trust_region_strategy, "levenberg_marquardt",              "Options are: levenberg_marquardt, dogleg");DEFINE_string(dogleg, "traditional_dogleg",              "Options are: traditional_dogleg, subspace_dogleg");DEFINE_string(linear_solver, "dense_qr", "Options are: "              "sparse_cholesky, dense_qr, dense_normal_cholesky and"              "cgnr");DEFINE_string(preconditioner, "jacobi", "Options are: "              "identity, jacobi");DEFINE_string(line_search, "wolfe",              "Line search algorithm to use, choices are: armijo and wolfe.");DEFINE_string(line_search_direction, "lbfgs",              "Line search direction algorithm to use, choices: lbfgs, bfgs");DEFINE_int32(max_line_search_iterations, 20,             "Maximum number of iterations for each line search.");DEFINE_int32(max_line_search_restarts, 10,             "Maximum number of restarts of line search direction algorithm.");DEFINE_string(line_search_interpolation, "cubic",              "Degree of polynomial aproximation in line search, "              "choices are: bisection, quadratic & cubic.");DEFINE_int32(lbfgs_rank, 20,             "Rank of L-BFGS inverse Hessian approximation in line search.");DEFINE_bool(approximate_eigenvalue_bfgs_scaling, false,            "Use approximate eigenvalue scaling in (L)BFGS line search.");DEFINE_double(sufficient_decrease, 1.0e-4,              "Line search Armijo sufficient (function) decrease factor.");DEFINE_double(sufficient_curvature_decrease, 0.9,              "Line search Wolfe sufficient curvature decrease factor.");DEFINE_int32(num_iterations, 10000, "Number of iterations");DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"            " nonmonotic steps");DEFINE_double(initial_trust_region_radius, 1e4, "Initial trust region radius");DEFINE_bool(use_numeric_diff, false,            "Use numeric differentiation instead of automatic "            "differentiation.");DEFINE_string(numeric_diff_method, "ridders", "When using numeric "              "differentiation, selects algorithm. Options are: central, "              "forward, ridders.");DEFINE_double(ridders_step_size, 1e-9, "Initial step size for Ridders "              "numeric differentiation.");DEFINE_int32(ridders_extrapolations, 3, "Maximal number of Ridders "             "extrapolations.");namespace ceres {namespace examples {namespace {using Eigen::Dynamic;using Eigen::RowMajor;typedef Eigen::Matrix<double, Dynamic, 1> Vector;typedef Eigen::Matrix<double, Dynamic, Dynamic, RowMajor> Matrix;using std::atof;using std::atoi;using std::cout;using std::ifstream;using std::string;using std::vector;void SplitStringUsingChar(const string& full,                          const char delim,                          vector<string>* result) {  std::back_insert_iterator< vector<string> > it(*result);  const char* p = full.data();  const char* end = p + full.size();  while (p != end) {    if (*p == delim) {      ++p;    } else {      const char* start = p;      while (++p != end && *p != delim) {        // Skip to the next occurence of the delimiter.      }      *it++ = string(start, p - start);    }  }}bool GetAndSplitLine(ifstream& ifs, vector<string>* pieces) {  pieces->clear();  char buf[256];  ifs.getline(buf, 256);  SplitStringUsingChar(string(buf), ' ', pieces);  return true;}void SkipLines(ifstream& ifs, int num_lines) {  char buf[256];  for (int i = 0; i < num_lines; ++i) {    ifs.getline(buf, 256);  }}class NISTProblem { public:  explicit NISTProblem(const string& filename) {    ifstream ifs(filename.c_str(), ifstream::in);    CHECK(ifs) << "Unable to open : " << filename;    vector<string> pieces;    SkipLines(ifs, 24);    GetAndSplitLine(ifs, &pieces);    const int kNumResponses = atoi(pieces[1].c_str());    GetAndSplitLine(ifs, &pieces);    const int kNumPredictors = atoi(pieces[0].c_str());    GetAndSplitLine(ifs, &pieces);    const int kNumObservations = atoi(pieces[0].c_str());    SkipLines(ifs, 4);    GetAndSplitLine(ifs, &pieces);    const int kNumParameters = atoi(pieces[0].c_str());    SkipLines(ifs, 8);    // Get the first line of initial and final parameter values to    // determine the number of tries.    GetAndSplitLine(ifs, &pieces);    const int kNumTries = pieces.size() - 4;    predictor_.resize(kNumObservations, kNumPredictors);    response_.resize(kNumObservations, kNumResponses);    initial_parameters_.resize(kNumTries, kNumParameters);    final_parameters_.resize(1, kNumParameters);    // Parse the line for parameter b1.    int parameter_id = 0;    for (int i = 0; i < kNumTries; ++i) {      initial_parameters_(i, parameter_id) = atof(pieces[i + 2].c_str());    }    final_parameters_(0, parameter_id) = atof(pieces[2 + kNumTries].c_str());    // Parse the remaining parameter lines.    for (int parameter_id = 1; parameter_id < kNumParameters; ++parameter_id) {     GetAndSplitLine(ifs, &pieces);     // b2, b3, ....     for (int i = 0; i < kNumTries; ++i) {       initial_parameters_(i, parameter_id) = atof(pieces[i + 2].c_str());     }     final_parameters_(0, parameter_id) = atof(pieces[2 + kNumTries].c_str());    }    // Certfied cost    SkipLines(ifs, 1);    GetAndSplitLine(ifs, &pieces);    certified_cost_ = atof(pieces[4].c_str()) / 2.0;    // Read the observations.    SkipLines(ifs, 18 - kNumParameters);    for (int i = 0; i < kNumObservations; ++i) {      GetAndSplitLine(ifs, &pieces);      // Response.      for (int j = 0; j < kNumResponses; ++j) {        response_(i, j) =  atof(pieces[j].c_str());      }      // Predictor variables.      for (int j = 0; j < kNumPredictors; ++j) {        predictor_(i, j) =  atof(pieces[j + kNumResponses].c_str());      }    }  }  Matrix initial_parameters(int start) const { return initial_parameters_.row(start); }  // NOLINT  Matrix final_parameters() const  { return final_parameters_; }  Matrix predictor()        const { return predictor_;         }  Matrix response()         const { return response_;          }  int predictor_size()      const { return predictor_.cols();  }  int num_observations()    const { return predictor_.rows();  }  int response_size()       const { return response_.cols();   }  int num_parameters()      const { return initial_parameters_.cols(); }  int num_starts()          const { return initial_parameters_.rows(); }  double certified_cost()   const { return certified_cost_; } private:  Matrix predictor_;  Matrix response_;  Matrix initial_parameters_;  Matrix final_parameters_;  double certified_cost_;};#define NIST_BEGIN(CostFunctionName)                          \  struct CostFunctionName {                                   \  CostFunctionName(const double* const x,                     \                   const double* const y,                     \                   const int n)                               \      : x_(x), y_(y), n_(n) {}                                \    const double* x_;                                         \    const double* y_;                                         \    const int n_;                                             \    template <typename T>                                     \    bool operator()(const T* const b, T* residual) const {    \      for (int i = 0; i < n_; ++i) {                          \        const T x(x_[i]);                                     \        residual[i] = y_[i] - (#define NIST_END ); } return true; }};// y = b1 * (b2+x)**(-1/b3)  +  eNIST_BEGIN(Bennet5)  b[0] * pow(b[1] + x, -1.0 / b[2])NIST_END// y = b1*(1-exp[-b2*x])  +  eNIST_BEGIN(BoxBOD)  b[0] * (1.0 - exp(-b[1] * x))NIST_END// y = exp[-b1*x]/(b2+b3*x)  +  eNIST_BEGIN(Chwirut)  exp(-b[0] * x) / (b[1] + b[2] * x)NIST_END// y  = b1*x**b2  +  eNIST_BEGIN(DanWood)  b[0] * pow(x, b[1])NIST_END// y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )//     + b6*exp( -(x-b7)**2 / b8**2 ) + eNIST_BEGIN(Gauss)  b[0] * exp(-b[1] * x) +  b[2] * exp(-pow((x - b[3])/b[4], 2)) +  b[5] * exp(-pow((x - b[6])/b[7], 2))NIST_END// y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  eNIST_BEGIN(Lanczos)  b[0] * exp(-b[1] * x) + b[2] * exp(-b[3] * x) + b[4] * exp(-b[5] * x)NIST_END// y = (b1+b2*x+b3*x**2+b4*x**3) ///     (1+b5*x+b6*x**2+b7*x**3)  +  eNIST_BEGIN(Hahn1)  (b[0] + b[1] * x + b[2] * x * x + b[3] * x * x * x) /  (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x)NIST_END// y = (b1 + b2*x + b3*x**2) ///    (1 + b4*x + b5*x**2)  +  eNIST_BEGIN(Kirby2)  (b[0] + b[1] * x + b[2] * x * x) /  (1.0 + b[3] * x + b[4] * x * x)NIST_END// y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  eNIST_BEGIN(MGH09)  b[0] * (x * x + x * b[1]) / (x * x + x * b[2] + b[3])NIST_END// y = b1 * exp[b2/(x+b3)]  +  eNIST_BEGIN(MGH10)  b[0] * exp(b[1] / (x + b[2]))NIST_END// y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5]NIST_BEGIN(MGH17)  b[0] + b[1] * exp(-x * b[3]) + b[2] * exp(-x * b[4])NIST_END// y = b1*(1-exp[-b2*x])  +  eNIST_BEGIN(Misra1a)  b[0] * (1.0 - exp(-b[1] * x))NIST_END// y = b1 * (1-(1+b2*x/2)**(-2))  +  eNIST_BEGIN(Misra1b)  b[0] * (1.0 - 1.0/ ((1.0 + b[1] * x / 2.0) * (1.0 + b[1] * x / 2.0)))  // NOLINTNIST_END// y = b1 * (1-(1+2*b2*x)**(-.5))  +  eNIST_BEGIN(Misra1c)  b[0] * (1.0 - pow(1.0 + 2.0 * b[1] * x, -0.5))NIST_END// y = b1*b2*x*((1+b2*x)**(-1))  +  eNIST_BEGIN(Misra1d)  b[0] * b[1] * x / (1.0 + b[1] * x)NIST_ENDconst double kPi = 3.141592653589793238462643383279;// pi = 3.141592653589793238462643383279E0// y =  b1 - b2*x - arctan[b3/(x-b4)]/pi  +  eNIST_BEGIN(Roszman1)  b[0] - b[1] * x - atan2(b[2], (x - b[3])) / kPiNIST_END// y = b1 / (1+exp[b2-b3*x])  +  eNIST_BEGIN(Rat42)  b[0] / (1.0 + exp(b[1] - b[2] * x))NIST_END// y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  eNIST_BEGIN(Rat43)  b[0] / pow(1.0 + exp(b[1] - b[2] * x), 1.0 / b[3])NIST_END// y = (b1 + b2*x + b3*x**2 + b4*x**3) ///    (1 + b5*x + b6*x**2 + b7*x**3)  +  eNIST_BEGIN(Thurber)  (b[0] + b[1] * x + b[2] * x * x  + b[3] * x * x * x) /  (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x)NIST_END// y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 )//        + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )//        + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 )  + eNIST_BEGIN(ENSO)  b[0] + b[1] * cos(2.0 * kPi * x / 12.0) +         b[2] * sin(2.0 * kPi * x / 12.0) +         b[4] * cos(2.0 * kPi * x / b[3]) +         b[5] * sin(2.0 * kPi * x / b[3]) +         b[7] * cos(2.0 * kPi * x / b[6]) +         b[8] * sin(2.0 * kPi * x / b[6])NIST_END// y = (b1/b2) * exp[-0.5*((x-b3)/b2)**2]  +  eNIST_BEGIN(Eckerle4)  b[0] / b[1] * exp(-0.5 * pow((x - b[2])/b[1], 2))NIST_ENDstruct Nelson { public:  Nelson(const double* const x, const double* const y, const int n)      : x_(x), y_(y), n_(n) {}  template <typename T>  bool operator()(const T* const b, T* residual) const {    // log[y] = b1 - b2*x1 * exp[-b3*x2]  +  e    for (int i = 0; i < n_; ++i) {      residual[i] = log(y_[i]) - (b[0] - b[1] * x_[2 * i] * exp(-b[2] * x_[2 * i + 1]));    }    return true;  } private:  const double* x_;  const double* y_;  const int n_;};static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) {  options->max_num_ridders_extrapolations = FLAGS_ridders_extrapolations;  options->ridders_relative_initial_step_size = FLAGS_ridders_step_size;}void SetMinimizerOptions(ceres::Solver::Options* options) {  CHECK(      ceres::StringToMinimizerType(FLAGS_minimizer, &options->minimizer_type));  CHECK(ceres::StringToLinearSolverType(FLAGS_linear_solver,                                        &options->linear_solver_type));  CHECK(ceres::StringToPreconditionerType(FLAGS_preconditioner,                                          &options->preconditioner_type));  CHECK(ceres::StringToTrustRegionStrategyType(      FLAGS_trust_region_strategy, &options->trust_region_strategy_type));  CHECK(ceres::StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));  CHECK(ceres::StringToLineSearchDirectionType(      FLAGS_line_search_direction, &options->line_search_direction_type));  CHECK(ceres::StringToLineSearchType(FLAGS_line_search,                                      &options->line_search_type));  CHECK(ceres::StringToLineSearchInterpolationType(      FLAGS_line_search_interpolation,      &options->line_search_interpolation_type));  options->max_num_iterations = FLAGS_num_iterations;  options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;  options->initial_trust_region_radius = FLAGS_initial_trust_region_radius;  options->max_lbfgs_rank = FLAGS_lbfgs_rank;  options->line_search_sufficient_function_decrease = FLAGS_sufficient_decrease;  options->line_search_sufficient_curvature_decrease =      FLAGS_sufficient_curvature_decrease;  options->max_num_line_search_step_size_iterations =      FLAGS_max_line_search_iterations;  options->max_num_line_search_direction_restarts =      FLAGS_max_line_search_restarts;  options->use_approximate_eigenvalue_bfgs_scaling =      FLAGS_approximate_eigenvalue_bfgs_scaling;  options->function_tolerance = std::numeric_limits<double>::epsilon();  options->gradient_tolerance = std::numeric_limits<double>::epsilon();  options->parameter_tolerance = std::numeric_limits<double>::epsilon();}string JoinPath(const string& dirname, const string& basename) {#ifdef _WIN32    static const char separator = '\\';#else    static const char separator = '/';#endif  // _WIN32  if ((!basename.empty() && basename[0] == separator) || dirname.empty()) {    return basename;  } else if (dirname[dirname.size() - 1] == separator) {    return dirname + basename;  } else {    return dirname + string(&separator, 1) + basename;  }}template <typename Model, int num_parameters>CostFunction* CreateCostFunction(const Matrix& predictor,                                 const Matrix& response,                                 const int num_observations) {  Model* model =      new Model(predictor.data(), response.data(), num_observations);  ceres::CostFunction* cost_function = NULL;  if (FLAGS_use_numeric_diff) {    ceres::NumericDiffOptions options;    SetNumericDiffOptions(&options);    if (FLAGS_numeric_diff_method == "central") {      cost_function = new NumericDiffCostFunction<Model,                                                  ceres::CENTRAL,                                                  ceres::DYNAMIC,                                                  num_parameters>(          model,          ceres::TAKE_OWNERSHIP,          num_observations,          options);    } else if (FLAGS_numeric_diff_method == "forward") {      cost_function = new NumericDiffCostFunction<Model,                                                  ceres::FORWARD,                                                  ceres::DYNAMIC,                                                  num_parameters>(          model,          ceres::TAKE_OWNERSHIP,          num_observations,          options);    } else if (FLAGS_numeric_diff_method == "ridders") {      cost_function = new NumericDiffCostFunction<Model,                                                  ceres::RIDDERS,                                                  ceres::DYNAMIC,                                                  num_parameters>(          model,          ceres::TAKE_OWNERSHIP,          num_observations,          options);    } else {      LOG(ERROR) << "Invalid numeric diff method specified";      return 0;    }  } else {    cost_function =        new ceres::AutoDiffCostFunction<Model, ceres::DYNAMIC, num_parameters>(            model, num_observations);  }  return cost_function;}double ComputeLRE(const Matrix& expected, const Matrix& actual) {  // Compute the LRE by comparing each component of the solution  // with the ground truth, and taking the minimum.  const double kMaxNumSignificantDigits = 11;  double log_relative_error = kMaxNumSignificantDigits + 1;  for (int i = 0; i < expected.cols(); ++i) {    const double tmp_lre = -std::log10(std::fabs(expected(i) - actual(i)) /                                       std::fabs(expected(i)));    // The maximum LRE is capped at 11 - the precision at which the    // ground truth is known.    //    // The minimum LRE is capped at 0 - no digits match between the    // computed solution and the ground truth.    log_relative_error =        std::min(log_relative_error,                 std::max(0.0, std::min(kMaxNumSignificantDigits, tmp_lre)));  }  return log_relative_error;}template <typename Model, int num_parameters>int RegressionDriver(const string& filename) {  NISTProblem nist_problem(JoinPath(FLAGS_nist_data_dir, filename));  CHECK_EQ(num_parameters, nist_problem.num_parameters());  Matrix predictor = nist_problem.predictor();  Matrix response = nist_problem.response();  Matrix final_parameters = nist_problem.final_parameters();  printf("%s\n", filename.c_str());  // Each NIST problem comes with multiple starting points, so we  // construct the problem from scratch for each case and solve it.  int num_success = 0;  for (int start = 0; start < nist_problem.num_starts(); ++start) {    Matrix initial_parameters = nist_problem.initial_parameters(start);    ceres::CostFunction* cost_function = CreateCostFunction<Model, num_parameters>(        predictor, response,  nist_problem.num_observations());    double initial_cost;    double final_cost;    if (!FLAGS_use_tiny_solver) {      ceres::Problem problem;      problem.AddResidualBlock(cost_function, NULL, initial_parameters.data());      ceres::Solver::Summary summary;      ceres::Solver::Options options;      SetMinimizerOptions(&options);      Solve(options, &problem, &summary);      initial_cost = summary.initial_cost;      final_cost = summary.final_cost;    } else {      ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters> cfa(          *cost_function);      typedef ceres::TinySolver<          ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters> >          Solver;      Solver solver;      solver.options.max_num_iterations = FLAGS_num_iterations;      solver.options.gradient_tolerance =          std::numeric_limits<double>::epsilon();      solver.options.parameter_tolerance =          std::numeric_limits<double>::epsilon();      Eigen::Matrix<double, num_parameters, 1> x;      x = initial_parameters.transpose();      typename Solver::Summary summary = solver.Solve(cfa, &x);      initial_parameters = x;      initial_cost = summary.initial_cost;      final_cost = summary.final_cost;      delete cost_function;    }    const double log_relative_error = ComputeLRE(nist_problem.final_parameters(),                                                 initial_parameters);    const int kMinNumMatchingDigits = 4;    if (log_relative_error > kMinNumMatchingDigits) {      ++num_success;    }    printf(        "start: %d status: %s lre: %4.1f initial cost: %e final cost:%e "        "certified cost: %e\n",        start + 1,        log_relative_error < kMinNumMatchingDigits ? "FAILURE" : "SUCCESS",        log_relative_error,        initial_cost,        final_cost,        nist_problem.certified_cost());  }  return num_success;}void SolveNISTProblems() {  if (FLAGS_nist_data_dir.empty()) {    LOG(FATAL) << "Must specify the directory containing the NIST problems";  }  cout << "Lower Difficulty\n";  int easy_success = 0;  easy_success += RegressionDriver<Misra1a, 2>("Misra1a.dat");  easy_success += RegressionDriver<Chwirut, 3>("Chwirut1.dat");  easy_success += RegressionDriver<Chwirut, 3>("Chwirut2.dat");  easy_success += RegressionDriver<Lanczos, 6>("Lanczos3.dat");  easy_success += RegressionDriver<Gauss, 8>("Gauss1.dat");  easy_success += RegressionDriver<Gauss, 8>("Gauss2.dat");  easy_success += RegressionDriver<DanWood, 2>("DanWood.dat");  easy_success += RegressionDriver<Misra1b, 2>("Misra1b.dat");  cout << "\nMedium Difficulty\n";  int medium_success = 0;  medium_success += RegressionDriver<Kirby2, 5>("Kirby2.dat");  medium_success += RegressionDriver<Hahn1, 7>("Hahn1.dat");  medium_success += RegressionDriver<Nelson, 3>("Nelson.dat");  medium_success += RegressionDriver<MGH17, 5>("MGH17.dat");  medium_success += RegressionDriver<Lanczos, 6>("Lanczos1.dat");  medium_success += RegressionDriver<Lanczos, 6>("Lanczos2.dat");  medium_success += RegressionDriver<Gauss, 8>("Gauss3.dat");  medium_success += RegressionDriver<Misra1c, 2>("Misra1c.dat");  medium_success += RegressionDriver<Misra1d, 2>("Misra1d.dat");  medium_success += RegressionDriver<Roszman1, 4>("Roszman1.dat");  medium_success += RegressionDriver<ENSO, 9>("ENSO.dat");  cout << "\nHigher Difficulty\n";  int hard_success = 0;  hard_success += RegressionDriver<MGH09, 4>("MGH09.dat");  hard_success += RegressionDriver<Thurber, 7>("Thurber.dat");  hard_success += RegressionDriver<BoxBOD, 2>("BoxBOD.dat");  hard_success += RegressionDriver<Rat42, 3>("Rat42.dat");  hard_success += RegressionDriver<MGH10, 3>("MGH10.dat");  hard_success += RegressionDriver<Eckerle4, 3>("Eckerle4.dat");  hard_success += RegressionDriver<Rat43, 4>("Rat43.dat");  hard_success += RegressionDriver<Bennet5, 3>("Bennett5.dat");  cout << "\n";  cout << "Easy    : " << easy_success << "/16\n";  cout << "Medium  : " << medium_success << "/22\n";  cout << "Hard    : " << hard_success << "/16\n";  cout << "Total   : " << easy_success + medium_success + hard_success       << "/54\n";}}  // namespace}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  ceres::examples::SolveNISTProblems();  return 0;}
 |