| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2018 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Authors: sameeragarwal@google.com (Sameer Agarwal)#include "Eigen/Dense"#include "benchmark/benchmark.h"#include "ceres/small_blas.h"namespace ceres {// Benchmarking matrix-vector multiply routines and optimizing memory// access requires that we make sure that they are not just sitting in// the cache. So, as the benchmarking routine iterates, we need to// multiply new/different matrice and vectors. Allocating/creating// these objects in the benchmarking loop is too heavy duty, so we// create them before hand and cycle through them in the// benchmark. This class, given the size of the matrix creates such// matrix and vector objects for use in the benchmark.class MatrixVectorMultiplyData { public:  MatrixVectorMultiplyData(int rows, int cols)      : num_elements_(1000),        rows_(rows),        cols_(cols),        a_(num_elements_ * rows, 1.001),        b_(num_elements_ * rows * cols, 1.5),        c_(num_elements_ * cols, 1.00003) {}  int num_elements() const { return num_elements_; }  double* GetA(int i) { return &a_[i * rows_]; }  double* GetB(int i) { return &b_[i * rows_ * cols_]; }  double* GetC(int i) { return &c_[i * cols_]; } private:  const int num_elements_;  const int rows_;  const int cols_;  std::vector<double> a_;  std::vector<double> b_;  std::vector<double> c_;};// Helper function to generate the various matrix sizes for which we// run the benchmark.static void MatrixSizeArguments(benchmark::internal::Benchmark* benchmark) {  std::vector<int> rows = {1, 2, 3, 4, 6, 8};  std::vector<int> cols = {1, 2, 3, 4, 8, 12, 15};  for (int r : rows) {    for (int c : cols) {      benchmark->Args({r, c});    }  }}void BM_MatrixVectorMultiply(benchmark::State& state) {  const int rows = state.range(0);  const int cols = state.range(1);  MatrixVectorMultiplyData data(rows, cols);  const int num_elements = data.num_elements();  int iter = 0;  for (auto _ : state) {    // A += B * C;    internal::MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(        data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));    iter = (iter + 1) % num_elements;  }}BENCHMARK(BM_MatrixVectorMultiply)->Apply(MatrixSizeArguments);void BM_MatrixTransposeVectorMultiply(benchmark::State& state) {  const int rows = state.range(0);  const int cols = state.range(1);  MatrixVectorMultiplyData data(cols, rows);  const int num_elements = data.num_elements();  int iter = 0;  for (auto _ : state) {    internal::MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(        data.GetB(iter), rows, cols, data.GetC(iter), data.GetA(iter));    iter = (iter + 1) % num_elements;  }}BENCHMARK(BM_MatrixTransposeVectorMultiply)->Apply(MatrixSizeArguments);}  // namespace ceresBENCHMARK_MAIN();
 |