| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2018 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Authors: sameeragarwal@google.com (Sameer Agarwal)
 
- #include <iostream>
 
- #include "Eigen/Dense"
 
- #include "benchmark/benchmark.h"
 
- #include "ceres/small_blas.h"
 
- namespace ceres {
 
- namespace internal {
 
- // Benchmarking matrix-matrix multiply routines and optimizing memory
 
- // access requires that we make sure that they are not just sitting in
 
- // the cache. So, as the benchmarking routine iterates, we need to
 
- // multiply new/different matrice. Allocating/creating these objects
 
- // in the benchmarking loop is too heavy duty, so we create them
 
- // before hand and cycle through them in the benchmark. This class,
 
- // given the size of the matrices creates such objects for use in the
 
- // benchmark.
 
- class MatrixMatrixMultiplyData {
 
-  public:
 
-   MatrixMatrixMultiplyData(
 
-       int a_rows, int a_cols, int b_rows, int b_cols, int c_rows, int c_cols)
 
-       : num_elements_(1000),
 
-         a_size_(a_rows * a_cols),
 
-         b_size_(b_rows * b_cols),
 
-         c_size_(c_rows * c_cols),
 
-         a_(num_elements_ * a_size_, 1.00001),
 
-         b_(num_elements_ * b_size_, 0.5),
 
-         c_(num_elements_ * c_size_, -1.1) {}
 
-   int num_elements() const { return num_elements_; }
 
-   double* GetA(int i) { return &a_[i * a_size_]; }
 
-   double* GetB(int i) { return &b_[i * b_size_]; }
 
-   double* GetC(int i) { return &c_[i * c_size_]; }
 
-  private:
 
-   int num_elements_;
 
-   int a_size_;
 
-   int b_size_;
 
-   int c_size_;
 
-   std::vector<double> a_;
 
-   std::vector<double> b_;
 
-   std::vector<double> c_;
 
- };
 
- static void MatrixMatrixMultiplySizeArguments(
 
-     benchmark::internal::Benchmark* benchmark) {
 
-   const std::vector<int> b_rows = {1, 2, 3, 4, 6, 8};
 
-   const std::vector<int> b_cols = {1, 2, 3, 4, 8, 12, 15};
 
-   const std::vector<int> c_cols = b_cols;
 
-   for (int i : b_rows) {
 
-     for (int j : b_cols) {
 
-       for (int k : c_cols) {
 
-         benchmark->Args({i, j, k});
 
-       }
 
-     }
 
-   }
 
- }
 
- void BM_MatrixMatrixMultiplyDynamic(benchmark::State& state) {
 
-   const int i = state.range(0);
 
-   const int j = state.range(1);
 
-   const int k = state.range(2);
 
-   const int b_rows = i;
 
-   const int b_cols = j;
 
-   const int c_rows = b_cols;
 
-   const int c_cols = k;
 
-   const int a_rows = b_rows;
 
-   const int a_cols = c_cols;
 
-   MatrixMatrixMultiplyData data(a_rows, a_cols, b_rows, b_cols, c_rows, c_cols);
 
-   const int num_elements = data.num_elements();
 
-   int iter = 0;
 
-   for (auto _ : state) {
 
-     // a += b * c
 
-     // clang-format off
 
-     MatrixMatrixMultiply
 
-         <Eigen::Dynamic, Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic, 1>
 
-         (data.GetB(iter), b_rows, b_cols,
 
-          data.GetC(iter), c_rows, c_cols,
 
-          data.GetA(iter), 0, 0, a_rows, a_cols);
 
-     // clang-format on
 
-     iter = (iter + 1) % num_elements;
 
-   }
 
- }
 
- BENCHMARK(BM_MatrixMatrixMultiplyDynamic)
 
-     ->Apply(MatrixMatrixMultiplySizeArguments);
 
- static void MatrixTransposeMatrixMultiplySizeArguments(
 
-     benchmark::internal::Benchmark* benchmark) {
 
-   std::vector<int> b_rows = {1, 2, 3, 4, 6, 8};
 
-   std::vector<int> b_cols = {1, 2, 3, 4, 8, 12, 15};
 
-   std::vector<int> c_cols = b_rows;
 
-   for (int i : b_rows) {
 
-     for (int j : b_cols) {
 
-       for (int k : c_cols) {
 
-         benchmark->Args({i, j, k});
 
-       }
 
-     }
 
-   }
 
- }
 
- void BM_MatrixTransposeMatrixMultiplyDynamic(benchmark::State& state) {
 
-   const int i = state.range(0);
 
-   const int j = state.range(1);
 
-   const int k = state.range(2);
 
-   const int b_rows = i;
 
-   const int b_cols = j;
 
-   const int c_rows = b_rows;
 
-   const int c_cols = k;
 
-   const int a_rows = b_cols;
 
-   const int a_cols = c_cols;
 
-   MatrixMatrixMultiplyData data(a_rows, a_cols, b_rows, b_cols, c_rows, c_cols);
 
-   const int num_elements = data.num_elements();
 
-   int iter = 0;
 
-   for (auto _ : state) {
 
-     // a += b' * c
 
-     // clang-format off
 
-     MatrixTransposeMatrixMultiply
 
-         <Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic,Eigen::Dynamic, 1>
 
-         (data.GetB(iter), b_rows, b_cols,
 
-          data.GetC(iter), c_rows, c_cols,
 
-          data.GetA(iter), 0, 0, a_rows, a_cols);
 
-     // clang-format on
 
-     iter = (iter + 1) % num_elements;
 
-   }
 
- }
 
- BENCHMARK(BM_MatrixTransposeMatrixMultiplyDynamic)
 
-     ->Apply(MatrixTransposeMatrixMultiplySizeArguments);
 
- }  // namespace internal
 
- }  // namespace ceres
 
- BENCHMARK_MAIN();
 
 
  |