| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/partitioned_matrix_view.h"#include <memory>#include <vector>#include "ceres/block_structure.h"#include "ceres/casts.h"#include "ceres/internal/eigen.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/random.h"#include "ceres/sparse_matrix.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {const double kEpsilon = 1e-14;class PartitionedMatrixViewTest : public ::testing::Test { protected:  void SetUp() final {    srand(5);    std::unique_ptr<LinearLeastSquaresProblem> problem(        CreateLinearLeastSquaresProblemFromId(2));    CHECK(problem != nullptr);    A_.reset(problem->A.release());    num_cols_ = A_->num_cols();    num_rows_ = A_->num_rows();    num_eliminate_blocks_ = problem->num_eliminate_blocks;    LinearSolver::Options options;    options.elimination_groups.push_back(num_eliminate_blocks_);    pmv_.reset(PartitionedMatrixViewBase::Create(        options, *down_cast<BlockSparseMatrix*>(A_.get())));  }  int num_rows_;  int num_cols_;  int num_eliminate_blocks_;  std::unique_ptr<SparseMatrix> A_;  std::unique_ptr<PartitionedMatrixViewBase> pmv_;};TEST_F(PartitionedMatrixViewTest, DimensionsTest) {  EXPECT_EQ(pmv_->num_col_blocks_e(), num_eliminate_blocks_);  EXPECT_EQ(pmv_->num_col_blocks_f(), num_cols_ - num_eliminate_blocks_);  EXPECT_EQ(pmv_->num_cols_e(), num_eliminate_blocks_);  EXPECT_EQ(pmv_->num_cols_f(), num_cols_ - num_eliminate_blocks_);  EXPECT_EQ(pmv_->num_cols(), A_->num_cols());  EXPECT_EQ(pmv_->num_rows(), A_->num_rows());}TEST_F(PartitionedMatrixViewTest, RightMultiplyE) {  Vector x1(pmv_->num_cols_e());  Vector x2(pmv_->num_cols());  x2.setZero();  for (int i = 0; i < pmv_->num_cols_e(); ++i) {    x1(i) = x2(i) = RandDouble();  }  Vector y1 = Vector::Zero(pmv_->num_rows());  pmv_->RightMultiplyE(x1.data(), y1.data());  Vector y2 = Vector::Zero(pmv_->num_rows());  A_->RightMultiply(x2.data(), y2.data());  for (int i = 0; i < pmv_->num_rows(); ++i) {    EXPECT_NEAR(y1(i), y2(i), kEpsilon);  }}TEST_F(PartitionedMatrixViewTest, RightMultiplyF) {  Vector x1(pmv_->num_cols_f());  Vector x2 = Vector::Zero(pmv_->num_cols());  for (int i = 0; i < pmv_->num_cols_f(); ++i) {    x1(i) = RandDouble();    x2(i + pmv_->num_cols_e()) = x1(i);  }  Vector y1 = Vector::Zero(pmv_->num_rows());  pmv_->RightMultiplyF(x1.data(), y1.data());  Vector y2 = Vector::Zero(pmv_->num_rows());  A_->RightMultiply(x2.data(), y2.data());  for (int i = 0; i < pmv_->num_rows(); ++i) {    EXPECT_NEAR(y1(i), y2(i), kEpsilon);  }}TEST_F(PartitionedMatrixViewTest, LeftMultiply) {  Vector x = Vector::Zero(pmv_->num_rows());  for (int i = 0; i < pmv_->num_rows(); ++i) {    x(i) = RandDouble();  }  Vector y = Vector::Zero(pmv_->num_cols());  Vector y1 = Vector::Zero(pmv_->num_cols_e());  Vector y2 = Vector::Zero(pmv_->num_cols_f());  A_->LeftMultiply(x.data(), y.data());  pmv_->LeftMultiplyE(x.data(), y1.data());  pmv_->LeftMultiplyF(x.data(), y2.data());  for (int i = 0; i < pmv_->num_cols(); ++i) {    EXPECT_NEAR(y(i),                (i < pmv_->num_cols_e()) ? y1(i) : y2(i - pmv_->num_cols_e()),                kEpsilon);  }}TEST_F(PartitionedMatrixViewTest, BlockDiagonalEtE) {  std::unique_ptr<BlockSparseMatrix> block_diagonal_ee(      pmv_->CreateBlockDiagonalEtE());  const CompressedRowBlockStructure* bs = block_diagonal_ee->block_structure();  EXPECT_EQ(block_diagonal_ee->num_rows(), 2);  EXPECT_EQ(block_diagonal_ee->num_cols(), 2);  EXPECT_EQ(bs->cols.size(), 2);  EXPECT_EQ(bs->rows.size(), 2);  EXPECT_NEAR(block_diagonal_ee->values()[0], 10.0, kEpsilon);  EXPECT_NEAR(block_diagonal_ee->values()[1], 155.0, kEpsilon);}TEST_F(PartitionedMatrixViewTest, BlockDiagonalFtF) {  std::unique_ptr<BlockSparseMatrix> block_diagonal_ff(      pmv_->CreateBlockDiagonalFtF());  const CompressedRowBlockStructure* bs = block_diagonal_ff->block_structure();  EXPECT_EQ(block_diagonal_ff->num_rows(), 3);  EXPECT_EQ(block_diagonal_ff->num_cols(), 3);  EXPECT_EQ(bs->cols.size(), 3);  EXPECT_EQ(bs->rows.size(), 3);  EXPECT_NEAR(block_diagonal_ff->values()[0], 70.0, kEpsilon);  EXPECT_NEAR(block_diagonal_ff->values()[1], 17.0, kEpsilon);  EXPECT_NEAR(block_diagonal_ff->values()[2], 37.0, kEpsilon);}}  // namespace internal}  // namespace ceres
 |