| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/invert_psd_matrix.h"#include "ceres/internal/eigen.h"#include "gtest/gtest.h"namespace ceres {namespace internal {static constexpr bool kFullRank = true;static constexpr bool kRankDeficient = false;template <int kSize>typename EigenTypes<kSize, kSize>::Matrix RandomPSDMatrixWithEigenValues(    const typename EigenTypes<kSize>::Vector& eigenvalues) {  typename EigenTypes<kSize, kSize>::Matrix m(eigenvalues.rows(),                                              eigenvalues.rows());  m.setRandom();  Eigen::SelfAdjointEigenSolver<typename EigenTypes<kSize, kSize>::Matrix> es(      m);  return es.eigenvectors() * eigenvalues.asDiagonal() *         es.eigenvectors().transpose();}TEST(InvertPSDMatrix, Identity3x3) {  const Matrix m = Matrix::Identity(3, 3);  const Matrix inverse_m = InvertPSDMatrix<3>(kFullRank, m);  EXPECT_NEAR((inverse_m - m).norm() / m.norm(),              0.0,              std::numeric_limits<double>::epsilon());}TEST(InvertPSDMatrix, FullRank5x5) {  EigenTypes<5>::Vector eigenvalues;  eigenvalues.setRandom();  eigenvalues = eigenvalues.array().abs().matrix();  const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);  const Matrix inverse_m = InvertPSDMatrix<5>(kFullRank, m);  EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0,              0.0,              10 * std::numeric_limits<double>::epsilon());}TEST(InvertPSDMatrix, RankDeficient5x5) {  EigenTypes<5>::Vector eigenvalues;  eigenvalues.setRandom();  eigenvalues = eigenvalues.array().abs().matrix();  eigenvalues(3) = 0.0;  const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues);  const Matrix inverse_m = InvertPSDMatrix<5>(kRankDeficient, m);  Matrix pseudo_identity = Matrix::Identity(5, 5);  pseudo_identity(3, 3) = 0.0;  EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(),              0.0,              10 * std::numeric_limits<double>::epsilon());}TEST(InvertPSDMatrix, DynamicFullRank5x5) {  EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5);  eigenvalues.setRandom();  eigenvalues = eigenvalues.array().abs().matrix();  const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues);  const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kFullRank, m);  EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0,              0.0,              10 * std::numeric_limits<double>::epsilon());}TEST(InvertPSDMatrix, DynamicRankDeficient5x5) {  EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5);  eigenvalues.setRandom();  eigenvalues = eigenvalues.array().abs().matrix();  eigenvalues(3) = 0.0;  const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues);  const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kRankDeficient, m);  Matrix pseudo_identity = Matrix::Identity(5, 5);  pseudo_identity(3, 3) = 0.0;  EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(),              0.0,              10 * std::numeric_limits<double>::epsilon());}}  // namespace internal}  // namespace ceres
 |