| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/dense_normal_cholesky_solver.h"#include <cstddef>#include "Eigen/Dense"#include "ceres/blas.h"#include "ceres/dense_sparse_matrix.h"#include "ceres/internal/eigen.h"#include "ceres/lapack.h"#include "ceres/linear_solver.h"#include "ceres/types.h"#include "ceres/wall_time.h"namespace ceres {namespace internal {DenseNormalCholeskySolver::DenseNormalCholeskySolver(    const LinearSolver::Options& options)    : options_(options) {}LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl(    DenseSparseMatrix* A,    const double* b,    const LinearSolver::PerSolveOptions& per_solve_options,    double* x) {  if (options_.dense_linear_algebra_library_type == EIGEN) {    return SolveUsingEigen(A, b, per_solve_options, x);  } else {    return SolveUsingLAPACK(A, b, per_solve_options, x);  }}LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen(    DenseSparseMatrix* A,    const double* b,    const LinearSolver::PerSolveOptions& per_solve_options,    double* x) {  EventLogger event_logger("DenseNormalCholeskySolver::Solve");  const int num_rows = A->num_rows();  const int num_cols = A->num_cols();  ConstColMajorMatrixRef Aref = A->matrix();  Matrix lhs(num_cols, num_cols);  lhs.setZero();  event_logger.AddEvent("Setup");  //   lhs += A'A  //  // Using rankUpdate instead of GEMM, exposes the fact that its the  // same matrix being multiplied with itself and that the product is  // symmetric.  lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose());  //   rhs = A'b  Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows);  if (per_solve_options.D != NULL) {    ConstVectorRef D(per_solve_options.D, num_cols);    lhs += D.array().square().matrix().asDiagonal();  }  event_logger.AddEvent("Product");  LinearSolver::Summary summary;  summary.num_iterations = 1;  summary.termination_type = LINEAR_SOLVER_SUCCESS;  Eigen::LLT<Matrix, Eigen::Upper> llt =      lhs.selfadjointView<Eigen::Upper>().llt();  if (llt.info() != Eigen::Success) {    summary.termination_type = LINEAR_SOLVER_FAILURE;    summary.message = "Eigen LLT decomposition failed.";  } else {    summary.termination_type = LINEAR_SOLVER_SUCCESS;    summary.message = "Success.";  }  VectorRef(x, num_cols) = llt.solve(rhs);  event_logger.AddEvent("Solve");  return summary;}LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(    DenseSparseMatrix* A,    const double* b,    const LinearSolver::PerSolveOptions& per_solve_options,    double* x) {  EventLogger event_logger("DenseNormalCholeskySolver::Solve");  if (per_solve_options.D != NULL) {    // Temporarily append a diagonal block to the A matrix, but undo    // it before returning the matrix to the user.    A->AppendDiagonal(per_solve_options.D);  }  const int num_cols = A->num_cols();  Matrix lhs(num_cols, num_cols);  event_logger.AddEvent("Setup");  // lhs = A'A  //  // Note: This is a bit delicate, it assumes that the stride on this  // matrix is the same as the number of rows.  BLAS::SymmetricRankKUpdate(      A->num_rows(), num_cols, A->values(), true, 1.0, 0.0, lhs.data());  if (per_solve_options.D != NULL) {    // Undo the modifications to the matrix A.    A->RemoveDiagonal();  }  // TODO(sameeragarwal): Replace this with a gemv call for true blasness.  //   rhs = A'b  VectorRef(x, num_cols) =      A->matrix().transpose() * ConstVectorRef(b, A->num_rows());  event_logger.AddEvent("Product");  LinearSolver::Summary summary;  summary.num_iterations = 1;  summary.termination_type = LAPACK::SolveInPlaceUsingCholesky(      num_cols, lhs.data(), x, &summary.message);  event_logger.AddEvent("Solve");  return summary;}}  // namespace internal}  // namespace ceres
 |