| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: David Gallup (dgallup@google.com)
 
- //         Sameer Agarwal (sameeragarwal@google.com)
 
- #include "ceres/canonical_views_clustering.h"
 
- #include <unordered_map>
 
- #include <unordered_set>
 
- #include "ceres/graph.h"
 
- #include "ceres/map_util.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::vector;
 
- typedef std::unordered_map<int, int> IntMap;
 
- typedef std::unordered_set<int> IntSet;
 
- class CanonicalViewsClustering {
 
-  public:
 
-   CanonicalViewsClustering() {}
 
-   // Compute the canonical views clustering of the vertices of the
 
-   // graph. centers will contain the vertices that are the identified
 
-   // as the canonical views/cluster centers, and membership is a map
 
-   // from vertices to cluster_ids. The i^th cluster center corresponds
 
-   // to the i^th cluster. It is possible depending on the
 
-   // configuration of the clustering algorithm that some of the
 
-   // vertices may not be assigned to any cluster. In this case they
 
-   // are assigned to a cluster with id = kInvalidClusterId.
 
-   void ComputeClustering(const CanonicalViewsClusteringOptions& options,
 
-                          const WeightedGraph<int>& graph,
 
-                          vector<int>* centers,
 
-                          IntMap* membership);
 
-  private:
 
-   void FindValidViews(IntSet* valid_views) const;
 
-   double ComputeClusteringQualityDifference(const int candidate,
 
-                                             const vector<int>& centers) const;
 
-   void UpdateCanonicalViewAssignments(const int canonical_view);
 
-   void ComputeClusterMembership(const vector<int>& centers,
 
-                                 IntMap* membership) const;
 
-   CanonicalViewsClusteringOptions options_;
 
-   const WeightedGraph<int>* graph_;
 
-   // Maps a view to its representative canonical view (its cluster
 
-   // center).
 
-   IntMap view_to_canonical_view_;
 
-   // Maps a view to its similarity to its current cluster center.
 
-   std::unordered_map<int, double> view_to_canonical_view_similarity_;
 
- };
 
- void ComputeCanonicalViewsClustering(
 
-     const CanonicalViewsClusteringOptions& options,
 
-     const WeightedGraph<int>& graph,
 
-     vector<int>* centers,
 
-     IntMap* membership) {
 
-   time_t start_time = time(NULL);
 
-   CanonicalViewsClustering cv;
 
-   cv.ComputeClustering(options, graph, centers, membership);
 
-   VLOG(2) << "Canonical views clustering time (secs): "
 
-           << time(NULL) - start_time;
 
- }
 
- // Implementation of CanonicalViewsClustering
 
- void CanonicalViewsClustering::ComputeClustering(
 
-     const CanonicalViewsClusteringOptions& options,
 
-     const WeightedGraph<int>& graph,
 
-     vector<int>* centers,
 
-     IntMap* membership) {
 
-   options_ = options;
 
-   CHECK(centers != nullptr);
 
-   CHECK(membership != nullptr);
 
-   centers->clear();
 
-   membership->clear();
 
-   graph_ = &graph;
 
-   IntSet valid_views;
 
-   FindValidViews(&valid_views);
 
-   while (valid_views.size() > 0) {
 
-     // Find the next best canonical view.
 
-     double best_difference = -std::numeric_limits<double>::max();
 
-     int best_view = 0;
 
-     // TODO(sameeragarwal): Make this loop multi-threaded.
 
-     for (const auto& view : valid_views) {
 
-       const double difference =
 
-           ComputeClusteringQualityDifference(view, *centers);
 
-       if (difference > best_difference) {
 
-         best_difference = difference;
 
-         best_view = view;
 
-       }
 
-     }
 
-     CHECK_GT(best_difference, -std::numeric_limits<double>::max());
 
-     // Add canonical view if quality improves, or if minimum is not
 
-     // yet met, otherwise break.
 
-     if ((best_difference <= 0) && (centers->size() >= options_.min_views)) {
 
-       break;
 
-     }
 
-     centers->push_back(best_view);
 
-     valid_views.erase(best_view);
 
-     UpdateCanonicalViewAssignments(best_view);
 
-   }
 
-   ComputeClusterMembership(*centers, membership);
 
- }
 
- // Return the set of vertices of the graph which have valid vertex
 
- // weights.
 
- void CanonicalViewsClustering::FindValidViews(IntSet* valid_views) const {
 
-   const IntSet& views = graph_->vertices();
 
-   for (const auto& view : views) {
 
-     if (graph_->VertexWeight(view) != WeightedGraph<int>::InvalidWeight()) {
 
-       valid_views->insert(view);
 
-     }
 
-   }
 
- }
 
- // Computes the difference in the quality score if 'candidate' were
 
- // added to the set of canonical views.
 
- double CanonicalViewsClustering::ComputeClusteringQualityDifference(
 
-     const int candidate, const vector<int>& centers) const {
 
-   // View score.
 
-   double difference =
 
-       options_.view_score_weight * graph_->VertexWeight(candidate);
 
-   // Compute how much the quality score changes if the candidate view
 
-   // was added to the list of canonical views and its nearest
 
-   // neighbors became members of its cluster.
 
-   const IntSet& neighbors = graph_->Neighbors(candidate);
 
-   for (const auto& neighbor : neighbors) {
 
-     const double old_similarity =
 
-         FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);
 
-     const double new_similarity = graph_->EdgeWeight(neighbor, candidate);
 
-     if (new_similarity > old_similarity) {
 
-       difference += new_similarity - old_similarity;
 
-     }
 
-   }
 
-   // Number of views penalty.
 
-   difference -= options_.size_penalty_weight;
 
-   // Orthogonality.
 
-   for (int i = 0; i < centers.size(); ++i) {
 
-     difference -= options_.similarity_penalty_weight *
 
-                   graph_->EdgeWeight(centers[i], candidate);
 
-   }
 
-   return difference;
 
- }
 
- // Reassign views if they're more similar to the new canonical view.
 
- void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
 
-     const int canonical_view) {
 
-   const IntSet& neighbors = graph_->Neighbors(canonical_view);
 
-   for (const auto& neighbor : neighbors) {
 
-     const double old_similarity =
 
-         FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);
 
-     const double new_similarity = graph_->EdgeWeight(neighbor, canonical_view);
 
-     if (new_similarity > old_similarity) {
 
-       view_to_canonical_view_[neighbor] = canonical_view;
 
-       view_to_canonical_view_similarity_[neighbor] = new_similarity;
 
-     }
 
-   }
 
- }
 
- // Assign a cluster id to each view.
 
- void CanonicalViewsClustering::ComputeClusterMembership(
 
-     const vector<int>& centers, IntMap* membership) const {
 
-   CHECK(membership != nullptr);
 
-   membership->clear();
 
-   // The i^th cluster has cluster id i.
 
-   IntMap center_to_cluster_id;
 
-   for (int i = 0; i < centers.size(); ++i) {
 
-     center_to_cluster_id[centers[i]] = i;
 
-   }
 
-   static constexpr int kInvalidClusterId = -1;
 
-   const IntSet& views = graph_->vertices();
 
-   for (const auto& view : views) {
 
-     auto it = view_to_canonical_view_.find(view);
 
-     int cluster_id = kInvalidClusterId;
 
-     if (it != view_to_canonical_view_.end()) {
 
-       cluster_id = FindOrDie(center_to_cluster_id, it->second);
 
-     }
 
-     InsertOrDie(membership, view, cluster_id);
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |