| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //         keir@google.com (Keir Mierle)
 
- //
 
- // The Problem object is used to build and hold least squares problems.
 
- #ifndef CERES_PUBLIC_PROBLEM_H_
 
- #define CERES_PUBLIC_PROBLEM_H_
 
- #include <array>
 
- #include <cstddef>
 
- #include <map>
 
- #include <memory>
 
- #include <set>
 
- #include <vector>
 
- #include "ceres/context.h"
 
- #include "ceres/internal/disable_warnings.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- class CostFunction;
 
- class LossFunction;
 
- class LocalParameterization;
 
- class Solver;
 
- struct CRSMatrix;
 
- namespace internal {
 
- class Preprocessor;
 
- class ProblemImpl;
 
- class ParameterBlock;
 
- class ResidualBlock;
 
- }  // namespace internal
 
- // A ResidualBlockId is an opaque handle clients can use to remove residual
 
- // blocks from a Problem after adding them.
 
- typedef internal::ResidualBlock* ResidualBlockId;
 
- // A class to represent non-linear least squares problems. Such
 
- // problems have a cost function that is a sum of error terms (known
 
- // as "residuals"), where each residual is a function of some subset
 
- // of the parameters. The cost function takes the form
 
- //
 
- //    N    1
 
- //   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ),
 
- //   i=1   2
 
- //
 
- // where
 
- //
 
- //   r_ij     is residual number i, component j; the residual is a
 
- //            function of some subset of the parameters x1...xk. For
 
- //            example, in a structure from motion problem a residual
 
- //            might be the difference between a measured point in an
 
- //            image and the reprojected position for the matching
 
- //            camera, point pair. The residual would have two
 
- //            components, error in x and error in y.
 
- //
 
- //   loss(y)  is the loss function; for example, squared error or
 
- //            Huber L1 loss. If loss(y) = y, then the cost function is
 
- //            non-robustified least squares.
 
- //
 
- // This class is specifically designed to address the important subset
 
- // of "sparse" least squares problems, where each component of the
 
- // residual depends only on a small number number of parameters, even
 
- // though the total number of residuals and parameters may be very
 
- // large. This property affords tremendous gains in scale, allowing
 
- // efficient solving of large problems that are otherwise
 
- // inaccessible.
 
- //
 
- // The canonical example of a sparse least squares problem is
 
- // "structure-from-motion" (SFM), where the parameters are points and
 
- // cameras, and residuals are reprojection errors. Typically a single
 
- // residual will depend only on 9 parameters (3 for the point, 6 for
 
- // the camera).
 
- //
 
- // To create a least squares problem, use the AddResidualBlock() and
 
- // AddParameterBlock() methods, documented below. Here is an example least
 
- // squares problem containing 3 parameter blocks of sizes 3, 4 and 5
 
- // respectively and two residual terms of size 2 and 6:
 
- //
 
- //   double x1[] = { 1.0, 2.0, 3.0 };
 
- //   double x2[] = { 1.0, 2.0, 3.0, 5.0 };
 
- //   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
 
- //
 
- //   Problem problem;
 
- //
 
- //   problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1);
 
- //   problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x3);
 
- //
 
- // Please see cost_function.h for details of the CostFunction object.
 
- class CERES_EXPORT Problem {
 
-  public:
 
-   struct CERES_EXPORT Options {
 
-     // These flags control whether the Problem object owns the cost
 
-     // functions, loss functions, and parameterizations passed into
 
-     // the Problem. If set to TAKE_OWNERSHIP, then the problem object
 
-     // will delete the corresponding cost or loss functions on
 
-     // destruction. The destructor is careful to delete the pointers
 
-     // only once, since sharing cost/loss/parameterizations is
 
-     // allowed.
 
-     Ownership cost_function_ownership = TAKE_OWNERSHIP;
 
-     Ownership loss_function_ownership = TAKE_OWNERSHIP;
 
-     Ownership local_parameterization_ownership = TAKE_OWNERSHIP;
 
-     // If true, trades memory for faster RemoveResidualBlock() and
 
-     // RemoveParameterBlock() operations.
 
-     //
 
-     // By default, RemoveParameterBlock() and RemoveResidualBlock() take time
 
-     // proportional to the size of the entire problem.  If you only ever remove
 
-     // parameters or residuals from the problem occasionally, this might be
 
-     // acceptable.  However, if you have memory to spare, enable this option to
 
-     // make RemoveParameterBlock() take time proportional to the number of
 
-     // residual blocks that depend on it, and RemoveResidualBlock() take (on
 
-     // average) constant time.
 
-     //
 
-     // The increase in memory usage is twofold: an additional hash set per
 
-     // parameter block containing all the residuals that depend on the parameter
 
-     // block; and a hash set in the problem containing all residuals.
 
-     bool enable_fast_removal = false;
 
-     // By default, Ceres performs a variety of safety checks when constructing
 
-     // the problem. There is a small but measurable performance penalty to
 
-     // these checks, typically around 5% of construction time. If you are sure
 
-     // your problem construction is correct, and 5% of the problem construction
 
-     // time is truly an overhead you want to avoid, then you can set
 
-     // disable_all_safety_checks to true.
 
-     //
 
-     // WARNING: Do not set this to true, unless you are absolutely sure of what
 
-     // you are doing.
 
-     bool disable_all_safety_checks = false;
 
-     // A Ceres global context to use for solving this problem. This may help to
 
-     // reduce computation time as Ceres can reuse expensive objects to create.
 
-     // The context object can be nullptr, in which case Ceres may create one.
 
-     //
 
-     // Ceres does NOT take ownership of the pointer.
 
-     Context* context = nullptr;
 
-   };
 
-   // The default constructor is equivalent to the
 
-   // invocation Problem(Problem::Options()).
 
-   Problem();
 
-   explicit Problem(const Options& options);
 
-   Problem(const Problem&) = delete;
 
-   void operator=(const Problem&) = delete;
 
-   ~Problem();
 
-   // Add a residual block to the overall cost function. The cost
 
-   // function carries with its information about the sizes of the
 
-   // parameter blocks it expects. The function checks that these match
 
-   // the sizes of the parameter blocks listed in parameter_blocks. The
 
-   // program aborts if a mismatch is detected. loss_function can be
 
-   // nullptr, in which case the cost of the term is just the squared norm
 
-   // of the residuals.
 
-   //
 
-   // The user has the option of explicitly adding the parameter blocks
 
-   // using AddParameterBlock. This causes additional correctness
 
-   // checking; however, AddResidualBlock implicitly adds the parameter
 
-   // blocks if they are not present, so calling AddParameterBlock
 
-   // explicitly is not required.
 
-   //
 
-   // The Problem object by default takes ownership of the
 
-   // cost_function and loss_function pointers. These objects remain
 
-   // live for the life of the Problem object. If the user wishes to
 
-   // keep control over the destruction of these objects, then they can
 
-   // do this by setting the corresponding enums in the Options struct.
 
-   //
 
-   // Note: Even though the Problem takes ownership of cost_function
 
-   // and loss_function, it does not preclude the user from re-using
 
-   // them in another residual block. The destructor takes care to call
 
-   // delete on each cost_function or loss_function pointer only once,
 
-   // regardless of how many residual blocks refer to them.
 
-   //
 
-   // Example usage:
 
-   //
 
-   //   double x1[] = {1.0, 2.0, 3.0};
 
-   //   double x2[] = {1.0, 2.0, 5.0, 6.0};
 
-   //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
 
-   //
 
-   //   Problem problem;
 
-   //
 
-   //   problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1);
 
-   //   problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x1);
 
-   //
 
-   // Add a residual block by listing the parameter block pointers
 
-   // directly instead of wapping them in a container.
 
-   template <typename... Ts>
 
-   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
 
-                                    LossFunction* loss_function,
 
-                                    double* x0,
 
-                                    Ts*... xs) {
 
-     const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}};
 
-     return AddResidualBlock(cost_function, loss_function,
 
-                             parameter_blocks.data(),
 
-                             static_cast<int>(parameter_blocks.size()));
 
-   }
 
-   // Add a residual block by providing a vector of parameter blocks.
 
-   ResidualBlockId AddResidualBlock(
 
-       CostFunction* cost_function,
 
-       LossFunction* loss_function,
 
-       const std::vector<double*>& parameter_blocks);
 
-   // Add a residual block by providing a pointer to the parameter block array
 
-   // and the number of parameter blocks.
 
-   ResidualBlockId AddResidualBlock(
 
-       CostFunction* cost_function,
 
-       LossFunction* loss_function,
 
-       double* const* const parameter_blocks,
 
-       int num_parameter_blocks);
 
-   // Add a parameter block with appropriate size to the problem.
 
-   // Repeated calls with the same arguments are ignored. Repeated
 
-   // calls with the same double pointer but a different size results
 
-   // in undefined behaviour.
 
-   void AddParameterBlock(double* values, int size);
 
-   // Add a parameter block with appropriate size and parameterization
 
-   // to the problem. Repeated calls with the same arguments are
 
-   // ignored. Repeated calls with the same double pointer but a
 
-   // different size results in undefined behaviour.
 
-   void AddParameterBlock(double* values,
 
-                          int size,
 
-                          LocalParameterization* local_parameterization);
 
-   // Remove a parameter block from the problem. The parameterization of the
 
-   // parameter block, if it exists, will persist until the deletion of the
 
-   // problem (similar to cost/loss functions in residual block removal). Any
 
-   // residual blocks that depend on the parameter are also removed, as
 
-   // described above in RemoveResidualBlock().
 
-   //
 
-   // If Problem::Options::enable_fast_removal is true, then the
 
-   // removal is fast (almost constant time). Otherwise, removing a parameter
 
-   // block will incur a scan of the entire Problem object.
 
-   //
 
-   // WARNING: Removing a residual or parameter block will destroy the implicit
 
-   // ordering, rendering the jacobian or residuals returned from the solver
 
-   // uninterpretable. If you depend on the evaluated jacobian, do not use
 
-   // remove! This may change in a future release.
 
-   void RemoveParameterBlock(double* values);
 
-   // Remove a residual block from the problem. Any parameters that the residual
 
-   // block depends on are not removed. The cost and loss functions for the
 
-   // residual block will not get deleted immediately; won't happen until the
 
-   // problem itself is deleted.
 
-   //
 
-   // WARNING: Removing a residual or parameter block will destroy the implicit
 
-   // ordering, rendering the jacobian or residuals returned from the solver
 
-   // uninterpretable. If you depend on the evaluated jacobian, do not use
 
-   // remove! This may change in a future release.
 
-   void RemoveResidualBlock(ResidualBlockId residual_block);
 
-   // Hold the indicated parameter block constant during optimization.
 
-   void SetParameterBlockConstant(double* values);
 
-   // Allow the indicated parameter block to vary during optimization.
 
-   void SetParameterBlockVariable(double* values);
 
-   // Returns true if a parameter block is set constant, and false otherwise.
 
-   bool IsParameterBlockConstant(double* values) const;
 
-   // Set the local parameterization for one of the parameter blocks.
 
-   // The local_parameterization is owned by the Problem by default. It
 
-   // is acceptable to set the same parameterization for multiple
 
-   // parameters; the destructor is careful to delete local
 
-   // parameterizations only once. The local parameterization can only
 
-   // be set once per parameter, and cannot be changed once set.
 
-   void SetParameterization(double* values,
 
-                            LocalParameterization* local_parameterization);
 
-   // Get the local parameterization object associated with this
 
-   // parameter block. If there is no parameterization object
 
-   // associated then nullptr is returned.
 
-   const LocalParameterization* GetParameterization(double* values) const;
 
-   // Set the lower/upper bound for the parameter at position "index".
 
-   void SetParameterLowerBound(double* values, int index, double lower_bound);
 
-   void SetParameterUpperBound(double* values, int index, double upper_bound);
 
-   // Get the lower/upper bound for the parameter at position
 
-   // "index". If the parameter is not bounded by the user, then its
 
-   // lower bound is -std::numeric_limits<double>::max() and upper
 
-   // bound is std::numeric_limits<double>::max().
 
-   double GetParameterLowerBound(double* values, int index) const;
 
-   double GetParameterUpperBound(double* values, int index) const;
 
-   // Number of parameter blocks in the problem. Always equals
 
-   // parameter_blocks().size() and parameter_block_sizes().size().
 
-   int NumParameterBlocks() const;
 
-   // The size of the parameter vector obtained by summing over the
 
-   // sizes of all the parameter blocks.
 
-   int NumParameters() const;
 
-   // Number of residual blocks in the problem. Always equals
 
-   // residual_blocks().size().
 
-   int NumResidualBlocks() const;
 
-   // The size of the residual vector obtained by summing over the
 
-   // sizes of all of the residual blocks.
 
-   int NumResiduals() const;
 
-   // The size of the parameter block.
 
-   int ParameterBlockSize(const double* values) const;
 
-   // The size of local parameterization for the parameter block. If
 
-   // there is no local parameterization associated with this parameter
 
-   // block, then ParameterBlockLocalSize = ParameterBlockSize.
 
-   int ParameterBlockLocalSize(const double* values) const;
 
-   // Is the given parameter block present in this problem or not?
 
-   bool HasParameterBlock(const double* values) const;
 
-   // Fills the passed parameter_blocks vector with pointers to the
 
-   // parameter blocks currently in the problem. After this call,
 
-   // parameter_block.size() == NumParameterBlocks.
 
-   void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
 
-   // Fills the passed residual_blocks vector with pointers to the
 
-   // residual blocks currently in the problem. After this call,
 
-   // residual_blocks.size() == NumResidualBlocks.
 
-   void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;
 
-   // Get all the parameter blocks that depend on the given residual block.
 
-   void GetParameterBlocksForResidualBlock(
 
-       const ResidualBlockId residual_block,
 
-       std::vector<double*>* parameter_blocks) const;
 
-   // Get the CostFunction for the given residual block.
 
-   const CostFunction* GetCostFunctionForResidualBlock(
 
-       const ResidualBlockId residual_block) const;
 
-   // Get the LossFunction for the given residual block. Returns nullptr
 
-   // if no loss function is associated with this residual block.
 
-   const LossFunction* GetLossFunctionForResidualBlock(
 
-       const ResidualBlockId residual_block) const;
 
-   // Get all the residual blocks that depend on the given parameter block.
 
-   //
 
-   // If Problem::Options::enable_fast_removal is true, then
 
-   // getting the residual blocks is fast and depends only on the number of
 
-   // residual blocks. Otherwise, getting the residual blocks for a parameter
 
-   // block will incur a scan of the entire Problem object.
 
-   void GetResidualBlocksForParameterBlock(
 
-       const double* values,
 
-       std::vector<ResidualBlockId>* residual_blocks) const;
 
-   // Options struct to control Problem::Evaluate.
 
-   struct EvaluateOptions {
 
-     // The set of parameter blocks for which evaluation should be
 
-     // performed. This vector determines the order that parameter
 
-     // blocks occur in the gradient vector and in the columns of the
 
-     // jacobian matrix. If parameter_blocks is empty, then it is
 
-     // assumed to be equal to vector containing ALL the parameter
 
-     // blocks.  Generally speaking the parameter blocks will occur in
 
-     // the order in which they were added to the problem. But, this
 
-     // may change if the user removes any parameter blocks from the
 
-     // problem.
 
-     //
 
-     // NOTE: This vector should contain the same pointers as the ones
 
-     // used to add parameter blocks to the Problem. These parameter
 
-     // block should NOT point to new memory locations. Bad things will
 
-     // happen otherwise.
 
-     std::vector<double*> parameter_blocks;
 
-     // The set of residual blocks to evaluate. This vector determines
 
-     // the order in which the residuals occur, and how the rows of the
 
-     // jacobian are ordered. If residual_blocks is empty, then it is
 
-     // assumed to be equal to the vector containing ALL the residual
 
-     // blocks. Generally speaking the residual blocks will occur in
 
-     // the order in which they were added to the problem. But, this
 
-     // may change if the user removes any residual blocks from the
 
-     // problem.
 
-     std::vector<ResidualBlockId> residual_blocks;
 
-     // Even though the residual blocks in the problem may contain loss
 
-     // functions, setting apply_loss_function to false will turn off
 
-     // the application of the loss function to the output of the cost
 
-     // function. This is of use for example if the user wishes to
 
-     // analyse the solution quality by studying the distribution of
 
-     // residuals before and after the solve.
 
-     bool apply_loss_function = true;
 
-     int num_threads = 1;
 
-   };
 
-   // Evaluate Problem. Any of the output pointers can be nullptr. Which
 
-   // residual blocks and parameter blocks are used is controlled by
 
-   // the EvaluateOptions struct above.
 
-   //
 
-   // Note 1: The evaluation will use the values stored in the memory
 
-   // locations pointed to by the parameter block pointers used at the
 
-   // time of the construction of the problem. i.e.,
 
-   //
 
-   //   Problem problem;
 
-   //   double x = 1;
 
-   //   problem.AddResidualBlock(new MyCostFunction, nullptr, &x);
 
-   //
 
-   //   double cost = 0.0;
 
-   //   problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);
 
-   //
 
-   // The cost is evaluated at x = 1. If you wish to evaluate the
 
-   // problem at x = 2, then
 
-   //
 
-   //    x = 2;
 
-   //    problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);
 
-   //
 
-   // is the way to do so.
 
-   //
 
-   // Note 2: If no local parameterizations are used, then the size of
 
-   // the gradient vector (and the number of columns in the jacobian)
 
-   // is the sum of the sizes of all the parameter blocks. If a
 
-   // parameter block has a local parameterization, then it contributes
 
-   // "LocalSize" entries to the gradient vector (and the number of
 
-   // columns in the jacobian).
 
-   //
 
-   // Note 3: This function cannot be called while the problem is being
 
-   // solved, for example it cannot be called from an IterationCallback
 
-   // at the end of an iteration during a solve.
 
-   bool Evaluate(const EvaluateOptions& options,
 
-                 double* cost,
 
-                 std::vector<double>* residuals,
 
-                 std::vector<double>* gradient,
 
-                 CRSMatrix* jacobian);
 
-   // Evaluates the residual block, storing the scalar cost in *cost,
 
-   // the residual components in *residuals, and the jacobians between
 
-   // the parameters and residuals in jacobians[i], in row-major order.
 
-   //
 
-   // If residuals is nullptr, the residuals are not computed.
 
-   //
 
-   // If jacobians is nullptr, no Jacobians are computed. If
 
-   // jacobians[i] is nullptr, then the Jacobian for that parameter
 
-   // block is not computed.
 
-   //
 
-   // It is not okay to request the Jacobian w.r.t a parameter block
 
-   // that is constant.
 
-   //
 
-   // The return value indicates the success or failure. Even if the
 
-   // function returns false, the caller should expect the output
 
-   // memory locations to have been modified.
 
-   //
 
-   // The returned cost and jacobians have had robustification and
 
-   // local parameterizations applied already; for example, the
 
-   // jacobian for a 4-dimensional quaternion parameter using the
 
-   // "QuaternionParameterization" is num_residuals by 3 instead of
 
-   // num_residuals by 4.
 
-   //
 
-   // apply_loss_function as the name implies allows the user to switch
 
-   // the application of the loss function on and off.
 
-   //
 
-   // TODO(sameeragarwal): Clarify interaction with IterationCallback
 
-   // once that cleanup is done.
 
-   bool EvaluateResidualBlock(ResidualBlockId residual_block_id,
 
-                              bool apply_loss_function,
 
-                              double* cost,
 
-                              double* residuals,
 
-                              double** jacobians) const;
 
-  private:
 
-   friend class Solver;
 
-   friend class Covariance;
 
-   std::unique_ptr<internal::ProblemImpl> impl_;
 
- };
 
- }  // namespace ceres
 
- #include "ceres/internal/reenable_warnings.h"
 
- #endif  // CERES_PUBLIC_PROBLEM_H_
 
 
  |