| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: joydeepb@ri.cmu.edu (Joydeep Biswas)//// This example demonstrates how to use the DynamicAutoDiffCostFunction// variant of CostFunction. The DynamicAutoDiffCostFunction is meant to// be used in cases where the number of parameter blocks or the sizes are not// known at compile time.//// This example simulates a robot traversing down a 1-dimension hallway with// noise odometry readings and noisy range readings of the end of the hallway.// By fusing the noisy odometry and sensor readings this example demonstrates// how to compute the maximum likelihood estimate (MLE) of the robot's pose at// each timestep.//// The robot starts at the origin, and it is travels to the end of a corridor of// fixed length specified by the "--corridor_length" flag. It executes a series// of motion commands to move forward a fixed length, specified by the// "--pose_separation" flag, at which pose it receives relative odometry// measurements as well as a range reading of the distance to the end of the// hallway. The odometry readings are drawn with Gaussian noise and standard// deviation specified by the "--odometry_stddev" flag, and the range readings// similarly with standard deviation specified by the "--range-stddev" flag.//// There are two types of residuals in this problem:// 1) The OdometryConstraint residual, that accounts for the odometry readings//    between successive pose estimatess of the robot.// 2) The RangeConstraint residual, that accounts for the errors in the observed//    range readings from each pose.//// The OdometryConstraint residual is modeled as an AutoDiffCostFunction with// a fixed parameter block size of 1, which is the relative odometry being// solved for, between a pair of successive poses of the robot. Differences// between observed and computed relative odometry values are penalized weighted// by the known standard deviation of the odometry readings.//// The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction// which sums up the relative odometry estimates to compute the estimated// global pose of the robot, and then computes the expected range reading.// Differences between the observed and expected range readings are then// penalized weighted by the standard deviation of readings of the sensor.// Since the number of poses of the robot is not known at compile time, this// cost function is implemented as a DynamicAutoDiffCostFunction.//// The outputs of the example are the initial values of the odometry and range// readings, and the range and odometry errors for every pose of the robot.// After computing the MLE, the computed poses and corrected odometry values// are printed out, along with the corresponding range and odometry errors. Note// that as an MLE of a noisy system the errors will not be reduced to zero, but// the odometry estimates will be updated to maximize the joint likelihood of// all odometry and range readings of the robot.//// Mathematical Formulation// ======================================================//// Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the// corridor starting from p_0 and ending at p_N. We assume that p_0 is the// origin of the coordinate system.// Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,// and range reading y_i is the range reading of the end of the corridor from// pose p_i. Both odometry as well as range readings are noisy, but we wish to// compute the maximum likelihood estimate (MLE) of corrected odometry values// u*_0 to u*_(N-1), such that the Belief is optimized://// Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                                  1.//   =        P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                            2.//   \propto  P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1))  3.//   =       \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) }                       4.//// Here, the subscript "(0:i)" is used as shorthand to indicate entries from all// timesteps 0 to i for that variable, both inclusive.//// Bayes' rule is used to derive eq. 3 from 2, and the independence of// odometry observations and range readings is expolited to derive 4 from 3.//// Thus, the Belief, up to scale, is factored as a product of a number of// terms, two for each pose, where for each pose term there is one term for the// range reading, P(y_i | u*_(0:i) and one term for the odometry reading,// P(u*_i | u_i) . Note that the term for the range reading is dependent on all// odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only// on a single value, u_i. Both the range reading as well as odoemtry// probability terms are modeled as the Normal distribution, and have the form://// p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}//// where x refers to either the MLE odometry u* or range reading y, and x_mean// is the corresponding mean value, u for the odometry terms, and y_expected,// the expected range reading based on all the previous odometry terms.// The MLE is thus found by finding those values x* which minimize://// x* = \arg\min{((x - x_mean) / x_stddev)^2}//// which is in the nonlinear least-square form, suited to being solved by Ceres.// The non-linear component arise from the computation of x_mean. The residuals// ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As// mentioned earlier, the odometry term for each pose depends only on one// variable, and will be computed by an AutoDiffCostFunction, while the term// for the range reading will depend on all previous odometry observations, and// will be computed by a DynamicAutoDiffCostFunction since the number of// odoemtry observations will only be known at run time.#include <cstdio>#include <math.h>#include <vector>#include "ceres/ceres.h"#include "ceres/dynamic_autodiff_cost_function.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "random.h"using ceres::AutoDiffCostFunction;using ceres::DynamicAutoDiffCostFunction;using ceres::CauchyLoss;using ceres::CostFunction;using ceres::LossFunction;using ceres::Problem;using ceres::Solve;using ceres::Solver;using ceres::examples::RandNormal;using std::min;using std::vector;DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is "              "travelling down.");DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses "              "between successive odometry updates.");DEFINE_double(odometry_stddev, 0.1, "The standard deviation of "              "odometry error of the robot.");DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of "              "the robot.");// The stride length of the dynamic_autodiff_cost_function evaluator.static const int kStride = 10;struct OdometryConstraint {  typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction;  OdometryConstraint(double odometry_mean, double odometry_stddev) :      odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}  template <typename T>  bool operator()(const T* const odometry, T* residual) const {    *residual = (*odometry - odometry_mean) / odometry_stddev;    return true;  }  static OdometryCostFunction* Create(const double odometry_value) {    return new OdometryCostFunction(        new OdometryConstraint(odometry_value, FLAGS_odometry_stddev));  }  const double odometry_mean;  const double odometry_stddev;};struct RangeConstraint {  typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride>      RangeCostFunction;  RangeConstraint(      int pose_index,      double range_reading,      double range_stddev,      double corridor_length) :      pose_index(pose_index), range_reading(range_reading),      range_stddev(range_stddev), corridor_length(corridor_length) {}  template <typename T>  bool operator()(T const* const* relative_poses, T* residuals) const {    T global_pose(0);    for (int i = 0; i <= pose_index; ++i) {      global_pose += relative_poses[i][0];    }    residuals[0] = (global_pose + range_reading - corridor_length) /        range_stddev;    return true;  }  // Factory method to create a CostFunction from a RangeConstraint to  // conveniently add to a ceres problem.  static RangeCostFunction* Create(const int pose_index,                                   const double range_reading,                                   vector<double>* odometry_values,                                   vector<double*>* parameter_blocks) {    RangeConstraint* constraint = new RangeConstraint(        pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length);    RangeCostFunction* cost_function = new RangeCostFunction(constraint);    // Add all the parameter blocks that affect this constraint.    parameter_blocks->clear();    for (int i = 0; i <= pose_index; ++i) {      parameter_blocks->push_back(&((*odometry_values)[i]));      cost_function->AddParameterBlock(1);    }    cost_function->SetNumResiduals(1);    return (cost_function);  }  const int pose_index;  const double range_reading;  const double range_stddev;  const double corridor_length;};void SimulateRobot(vector<double>* odometry_values,                   vector<double>* range_readings) {  const int num_steps = static_cast<int>(      ceil(FLAGS_corridor_length / FLAGS_pose_separation));  // The robot starts out at the origin.  double robot_location = 0.0;  for (int i = 0; i < num_steps; ++i) {    const double actual_odometry_value = min(        FLAGS_pose_separation, FLAGS_corridor_length - robot_location);    robot_location += actual_odometry_value;    const double actual_range = FLAGS_corridor_length - robot_location;    const double observed_odometry =        RandNormal() * FLAGS_odometry_stddev + actual_odometry_value;    const double observed_range =        RandNormal() * FLAGS_range_stddev + actual_range;    odometry_values->push_back(observed_odometry);    range_readings->push_back(observed_range);  }}void PrintState(const vector<double>& odometry_readings,                const vector<double>& range_readings) {  CHECK_EQ(odometry_readings.size(), range_readings.size());  double robot_location = 0.0;  printf("pose: location     odom    range  r.error  o.error\n");  for (int i = 0; i < odometry_readings.size(); ++i) {    robot_location += odometry_readings[i];    const double range_error =        robot_location + range_readings[i] - FLAGS_corridor_length;    const double odometry_error =        FLAGS_pose_separation - odometry_readings[i];    printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",           static_cast<int>(i), robot_location, odometry_readings[i],           range_readings[i], range_error, odometry_error);  }}int main(int argc, char** argv) {  google::InitGoogleLogging(argv[0]);  CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  // Make sure that the arguments parsed are all positive.  CHECK_GT(FLAGS_corridor_length, 0.0);  CHECK_GT(FLAGS_pose_separation, 0.0);  CHECK_GT(FLAGS_odometry_stddev, 0.0);  CHECK_GT(FLAGS_range_stddev, 0.0);  vector<double> odometry_values;  vector<double> range_readings;  SimulateRobot(&odometry_values, &range_readings);  printf("Initial values:\n");  PrintState(odometry_values, range_readings);  ceres::Problem problem;  for (int i = 0; i < odometry_values.size(); ++i) {    // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from    // pose i.    vector<double*> parameter_blocks;    RangeConstraint::RangeCostFunction* range_cost_function =        RangeConstraint::Create(            i, range_readings[i], &odometry_values, ¶meter_blocks);    problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks);    // Create and add an AutoDiffCostFunction for the OdometryConstraint for    // pose i.    problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),                             NULL,                             &(odometry_values[i]));  }  ceres::Solver::Options solver_options;  solver_options.minimizer_progress_to_stdout = true;  Solver::Summary summary;  printf("Solving...\n");  Solve(solver_options, &problem, &summary);  printf("Done.\n");  std::cout << summary.FullReport() << "\n";  printf("Final values:\n");  PrintState(odometry_values, range_readings);  return 0;}
 |