| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: strandmark@google.com (Petter Strandmark)//// Denoising using Fields of Experts and the Ceres minimizer.//// Note that for good denoising results the weighting between the data term// and the Fields of Experts term needs to be adjusted. This is discussed// in [1]. This program assumes Gaussian noise. The noise model can be changed// by substituing another function for QuadraticCostFunction.//// [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of//     Computer Vision, 82(2):205--229, 2009.#include <algorithm>#include <cmath>#include <iostream>#include <vector>#include <sstream>#include <string>#include "ceres/ceres.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "fields_of_experts.h"#include "pgm_image.h"DEFINE_string(input, "", "File to which the output image should be written");DEFINE_string(foe_file, "", "FoE file to use");DEFINE_string(output, "", "File to which the output image should be written");DEFINE_double(sigma, 20.0, "Standard deviation of noise");DEFINE_bool(verbose, false, "Prints information about the solver progress.");DEFINE_bool(line_search, false, "Use a line search instead of trust region "            "algorithm.");namespace ceres {namespace examples {// This cost function is used to build the data term.////   f_i(x) = a * (x_i - b)^2//class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { public:  QuadraticCostFunction(double a, double b)    : sqrta_(std::sqrt(a)), b_(b) {}  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    const double x = parameters[0][0];    residuals[0] = sqrta_ * (x - b_);    if (jacobians != NULL && jacobians[0] != NULL) {      jacobians[0][0] = sqrta_;    }    return true;  } private:  double sqrta_, b_;};// Creates a Fields of Experts MAP inference problem.void CreateProblem(const FieldsOfExperts& foe,                   const PGMImage<double>& image,                   Problem* problem,                   PGMImage<double>* solution) {  // Create the data term  CHECK_GT(FLAGS_sigma, 0.0);  const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma);  for (unsigned index = 0; index < image.NumPixels(); ++index) {    ceres::CostFunction* cost_function =        new QuadraticCostFunction(coefficient,                                  image.PixelFromLinearIndex(index));    problem->AddResidualBlock(cost_function,                              NULL,                              solution->MutablePixelFromLinearIndex(index));  }  // Create Ceres cost and loss functions for regularization. One is needed for  // each filter.  std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());  std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());  for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {    loss_function[alpha_index] = foe.NewLossFunction(alpha_index);    cost_function[alpha_index] = foe.NewCostFunction(alpha_index);  }  // Add FoE regularization for each patch in the image.  for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {    for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {      // Build a vector with the pixel indices of this patch.      std::vector<double*> pixels;      const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();      const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();      for (int i = 0; i < foe.NumVariables(); ++i) {        double* pixel = solution->MutablePixel(x + x_delta_indices[i],                                               y + y_delta_indices[i]);        pixels.push_back(pixel);      }      // For this patch with coordinates (x, y), we will add foe.NumFilters()      // terms to the objective function.      for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {        problem->AddResidualBlock(cost_function[alpha_index],                                  loss_function[alpha_index],                                  pixels);      }    }  }}// Solves the FoE problem using Ceres and post-processes it to make sure the// solution stays within [0, 255].void SolveProblem(Problem* problem, PGMImage<double>* solution) {  // These parameters may be experimented with. For example, ceres::DOGLEG tends  // to be faster for 2x2 filters, but gives solutions with slightly higher  // objective function value.  ceres::Solver::Options options;  options.max_num_iterations = 100;  if (FLAGS_verbose) {    options.minimizer_progress_to_stdout = true;  }  if (FLAGS_line_search) {    options.minimizer_type = ceres::LINE_SEARCH;  }  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;  options.function_tolerance = 1e-3;  // Enough for denoising.  ceres::Solver::Summary summary;  ceres::Solve(options, problem, &summary);  if (FLAGS_verbose) {    std::cout << summary.FullReport() << "\n";  }  // Make the solution stay in [0, 255].  for (int x = 0; x < solution->width(); ++x) {    for (int y = 0; y < solution->height(); ++y) {      *solution->MutablePixel(x, y) =          std::min(255.0, std::max(0.0, solution->Pixel(x, y)));    }  }}}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  using namespace ceres::examples;  std::string      usage("This program denoises an image using Ceres.  Sample usage:\n");  usage += argv[0];  usage += " --input=<noisy image PGM file> --foe_file=<FoE file name>";  CERES_GFLAGS_NAMESPACE::SetUsageMessage(usage);  CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  if (FLAGS_input.empty()) {    std::cerr << "Please provide an image file name.\n";    return 1;  }  if (FLAGS_foe_file.empty()) {    std::cerr << "Please provide a Fields of Experts file name.\n";    return 1;  }  // Load the Fields of Experts filters from file.  FieldsOfExperts foe;  if (!foe.LoadFromFile(FLAGS_foe_file)) {    std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n";    return 2;  }  // Read the images  PGMImage<double> image(FLAGS_input);  if (image.width() == 0) {    std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n";    return 3;  }  PGMImage<double> solution(image.width(), image.height());  solution.Set(0.0);  ceres::Problem problem;  CreateProblem(foe, image, &problem, &solution);  SolveProblem(&problem, &solution);  if (!FLAGS_output.empty()) {    CHECK(solution.WriteToFile(FLAGS_output))        << "Writing \"" << FLAGS_output << "\" failed.";  }  return 0;}
 |